• Title/Summary/Keyword: aircraft conceptual design

Search Result 67, Processing Time 0.021 seconds

Further Improvement in Rotor Aerodynamics Estimation in Helicopter Conceptual Design and Optimization Framework for a Compound Rotorcraft

  • Lim, JaeHoon;Shin, SangJoon;Kee, YoungJung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.641-650
    • /
    • 2017
  • In order to include the design capability for a compound rotorcraft in a helicopter conceptual design and optimization framework, relevant further improvement was planned and conducted. Previously, a certain conceptual design optimization framework was developed by the present authors to design a modern rotorcraft with single main and tail rotor. The previously developed framework was further improved to expand its capability for a compound rotorcraft. Specifically, its power estimation algorithm was upgraded by using a comprehensive rotorcraft analysis program, CAMRAD II. The presently improved conceptual design and optimization framework was validated using data of the XH-59A aircraft.

Possibility Based Design Optimization of a Light Aircraft using Database Driven Approach

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.25-28
    • /
    • 2015
  • Aircraft conceptual design usually uses low to medium fidelity analysis to determine the basic configuration of an aircraft. Optimum solution is bounded by at least one of the constraints in most cases. This solution has risk to fail at later stage when analyzed with more sophisticated analysis tools. This research uses pre-constructed database to estimate the analysis prediction errors associated with simplified analysis methods. A possibility based design optimization framework is developed to utilize the newly proposed piecewise-linear fuzzy membership functions that compensate the discrepancies caused by simplified analysis. The proposed approach for aircraft design produces the optimum aircraft configurations that are less likely to fall into infeasible region when analyzed using higher fidelity analysis at later design stages.

  • PDF

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

Work Packages of the Aircraft Noise Group for the Development of a Commercial Aircraft (중형항공기 개발과 관련한 항공기 소음업무)

  • 황창전;최동환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.643-648
    • /
    • 1997
  • Concern for noise problems of a commercial aircraft in community and cabin is increasing due to the more restrictive regulation and customer requirements. This paper introduces to the work packages of the aircraft noise engineer for the development of a commercial aircraft. First of all, the noise engineer establish the design requirement and objectives(DR&O). Then the design and analysis are performed to satisfy with the DR&O during the conceptual and preliminary design phase. And the test and evaluation(T&E) are carried out to verify the analysis results and to acquire the type certification.

  • PDF

Aircraft configuration selection method using the airworthiness certification and the decision making process (항공안전 규정 및 의사결정모델을 이용한 항공기 형상선정기법 연구)

  • Yoon, Jung-Won;Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.467-476
    • /
    • 2010
  • For the very light jet aircraft design, the design baseline configuration has been selected using the logical decision making process, and the design optimization problem is formulated by considering the airworthiness regulations as design constraints. Airworthiness regulations are the minimum requirements for the safe aircraft flight and must be considered from the conceptual design stage. After carefully selecting the airworthiness constraints and the user specified requirements, a series of design making models including the affinity diagram, nested column diagram, quality function deployment (QFD), Pugh concept selection matrix, are used to find and evaluate alternative configuration baselines. From the feasible design space searching process, the best altenative design, which satisfies the airworthiness constraints while excluding the user subjective decisions as much as possible, has been successfully derived.

HPA(Human Powered Aircraft) Material Selection and Structural Design (인력비행기의 소재선정 및 구조설계)

  • Yun, Sungchan;Hu, Hyenoo;You, Saerom;Lee, Jaehong;Kim, Dooman;Oh, Janggeun;Lee, Heewoo
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • The 1st development of "Human Powered Aircraft(HPA)" in Korea has been conducting by KAFA(Korea Air Force Academy) from Aug. 2008 to now. HPA is an aircraft powered by directly human energy. The thrust provided by the human power may be the only source and that is weak. Therefore, light weight and strong structure is first requirement. In this paper, treating a basic conceptual design of HPA and material property and material choice for HPA. Also analysing the structure and checking the safety of HPA.

  • PDF

Analysis and Calibration of Propeller Power Effect for Turboprop Aircraft (터보프롭 항공기의 프로펠러 파워효과 해석 및 보정)

  • Park, Youngmin;Chung, Jindeog
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.62-66
    • /
    • 2015
  • During the conceptual design of turboprop aircraft, the power effect driven from rotating propeller is typically obtained from empirical data. In the present paper, propeller power effect was obtained by using unsteady three-dimensional Navier-Stokes solver with $k-{\omega}$ turbulence model for the accurate prediction of turboprop aircraft performance. In order to simulate the relative motion between propeller and fuselage, unsteady sliding mesh method was used. During simulation, three flow conditions such as climb, cruise and descending flight were selected considering the flight envelop of the real turboprop aircraft. For the correction of aerodynamic coefficients, the thrust effect of engine exhaust gas was included based on the engine manufacturer's data. Using the computational results, the correction table for the aerodynamic coefficient of turboprop aircraft was suggested for the performance analysis of turboprop aircraft.

Conceptual Design for Small Solar Powered Uninhabited Aerial Vehicle (소형 태양광 무인항공기의 개념 설계)

  • Lee, Sang-Hyup;Park, Sang-Hyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Several studies on the development for solar powered uninhabited aerial vehicles(UAVs) are under way as the use of the renewable energy becomes more and more important these days. This paper is for the conceptual design by a discrete and iterative method. An initial design point with 1.5 meter wing span is determined in the global design, which deploys the mass and energy balances among each component of UAV including solar cells and airframe. Then, the iteration for subsystems is carried out with the help of Vortex Lattice Method(VLM) to optimize the aircraft configuration and the solar power system. It is demonstrated in simulations that the optimized design increases the flight time from 62 to 120 minutes when the solar power system is installed. Also, the associated dynamic analysis reveals that the designed small aircraft has the acceptable stability and controllability.

Conceptual Design of an HTS Motor for Future Electric Aircraft (차세대 전기 항공기를 위한 HTS 모터의 개념 설계)

  • Le, Dinh-Vuong;Nam, Gi-Dong;Lee, Seok-Ju;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.49-57
    • /
    • 2020
  • Conventional electric motors are not suitable for aircraft because of their large size and weight. High-temperature superconducting (HTS) motors have high current density, high magnetic field density, and low loss, so they can significantly reduce the size and weight compared to general electric motors. This paper presents the conceptual design and analysis results of HTS motors for electric propulsion in future aircraft. A 2.5 MW HTS motor with a rotational speed of 7,200 RPM was designed and the specific power (kW/kg) was analyzed. The operating temperature of the field coil of the HTS motor is 20K in consideration of LH2 cooling. The stator winding were connected in a multi-phase configuration and Litz wires were used to minimize eddy current losses. As a result, it was confirmed that the specific power of the motor is about 18.67 kW/kg, which is much higher than that of the conventional electric motor.