• Title/Summary/Keyword: airborne gravity survey

Search Result 8, Processing Time 0.02 seconds

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

The Precision Geoid Development based on Various Gravity Data (다양한 중력자료를 이용한 우리나라 정밀 지오이드 모델 개발)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keun, Young-Min
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.35-37
    • /
    • 2010
  • To construct precision geoid model, the gravity data having equal distribution and quality is necessary. In previous study, however, the geoid model has low precision since the biased distributed gravity data and some unverified data has been used and the gap between land and ocean exists. Now, the airborne and land gravity data was collected by various survey and the ship-borne gravity data and altimeter data has been achieved. Therefore, the precision geoid model development would be possible. And the GPS/Leveling data obtained by NGII could be used for construction of hybrid geoid in Korea. In this study, the procedure of geoid construction based on airborne, land, ship-borne and altimeter data using Remove-Restore technique will be explained. And the verification of gravimetric geoid and hybrid geoid would be introduced.

  • PDF

Free-air anomaly from Airborne Gravity Surveying (항공중력측정에 의한 프리에어 이상 산출)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2009
  • The gravity data collected and reserved in Korea is seriously biased in its distribution. That is, only the west-southern part of the peninsula including Chungcheong and Jeonla area has dense distribution while only a part is covered in Gyoungsang area. Especially, the low density of the gravity data in mountainous area basically limits the accuracy of the gravimetric geoid in Korea. As one of the solution to overcome the problem, an airborne gravity survey were conducted from Dec. 2008 $\sim$ Jan. 2009. In this study, free-air gravity anomaly derived from the airborne gravity data which has consistent quality are presented. The data processing for the airborne gravity is composed of several corrections of errors such as errors from gravity measurement, errors from flight dynamics, errors from GPS, and errors from time synchronization. We presented detailed explanations on the data processing with the final cross-over results. The free-air anomaly from airborne gravity finally shows the cross-over accuracy of 2.21mGal which reflects the precision of each track is 1.56mGal. It is expected that the result from this study will play a role as input data in precision geoid determination with ground and ship-borne gravity data after appropriate fusion process.

Construction of the Airborne Gravity Based Geoid and its Evaluation (항공중력기반 지오이드 모델 구축 및 검증)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.159-167
    • /
    • 2009
  • To obtain the gravity data with consistent quality and good distribution over Korea, to overcome the difficulties in constructing precision geoid from biased distribution of ground data, to resolve the discrepancy between the ground and ocean gravity data, an airborne gravity survey was conducted from Dec. 2008 to Jan. 2009. The data was measured at the average flying height of 3,000m and the data with cross-over error of 2.21mGal is obtained. The geoid constructed using this airborne gravity data shows the range of 9.34 $\sim$ 33.88m. Comparing the geoid with respect to the GPS/levelling data, a precision of 0.145m is obtained. After fitting, the degree of fit to GPS/levelling data was calculated about 5cm. It was found that there exists large biases in the area of south-western and northern part of the peninsular which is considered to be the effect of distorted vertical datum in Korea. Thus, more investigation on vertical datum would be needed in near future.

Determination of the Optimal Parameters in Data Processing for the Precision Geoid Construction (정밀 지오이드 구축을 위한 자료처리의 최적 변수 결정)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.397-404
    • /
    • 2009
  • To solve the problems of distribution and quality on land gravity data, airborne gravity survey was performed in 2008 obtaining the airborne gravity data with accuracy of 1.56mGal. Since airborne gravity data is the obtained at the flight height, it is necessary to convert the airborne gravity data to the surface to combine various gravity data and compute precision geoid. In addition, Stokes' integral radius, Stokes' kernel and the radius of terrain effect computation should be optimally determined to calculate precision geoid. In this study, we made an effort to decide the optimal parameters based on the distribution and the characteristic of gravity data. Then, two geoid models were calculated using the selected parameters and the difference of geoid was calculated with mean of -16.95cm and the standard deviation of ${\pm}8.50cm$. We consider that this difference is due to the distribution and errors on the gravity data. For future work, the study on the effect of geoid with newly obtained land gravity data ship-borne gravity data and GPS/Leveling data should be conducted. Furthermore, the study on the downward continuation and terran effect calculation should be studied in detail for better precision geoid construction.

  • PDF

Using DGPS as An Acceleration Sensor for Airborne Gravimetry

  • Zhang, Kaidong;Shen, Lincheng;Hu, Xiaoping;Wu, Meiping
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.327-332
    • /
    • 2006
  • In airborne gravimetry, there are two data streams. One is the specific force measured by an air/sea gravimeter or accelerometers, the other is kinematic acceleration measured by DGPS. And the difference of them provides the gravity disturbance information. To satisfy the requirement of most applications, an accuracy of 1mGal $(1mCal=10^{-5}m/s^{2})$ with a spatial resolution of 1km is the aim of current airborne gravimetry. There are two different methods to derive the kinematic acceleration. The generally used method is to differentiate the position twice, and the position can be calculated by commercial DGPS software. The main defect of this method is that integer ambiguities need to be fixed to get the precise position solution, but it's not a trivial thing for long base line. And to fix integer ambiguities, the noisier iono-free measurement is used. When differentiation is applied, noise is amplified and will influence the accuracy of acceleration. The other method is to get carrier phase acceleration by differentiate the carrier phase first, and then using the acceleration of GPS satellite to derive the vehicle acceleration. The main advantages include that fixing integer ambiguities is not needed anymore, position can be relaxed to about 10 meters, and smoother acceleration can be got since iono-free measurement is not needed. In some literatures, it's considered that the dynamic performance of the second method is inferior to that of the first. Through analysis, it is found that the performance degradation in dynamic environment results from the simplification of the GPS carrier phase observable model. And an iterative algorithm is presented to compensate the model error. Using a dynamic GPS data from an aeromagnetic survey, the importance of this compensation is showed at last.

  • PDF

The Study on Integration of Gravities Anomaly in South Korea and Its Vicinities by Using Spherical Cap Harmonic Analysis (구면캡 조화분석을 이용한 남한 및 그 주변지역의 중력이상 통합에 관한 연구)

  • Hwang, Jong-Sun;Kim, Hyung-Rae;Kim, Chang-Hwan;You, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The gravity anomalies that observed by ground and shipborne survey and calculated from GRACE satellite are combined by using spherical cap harmonic analysis (SCHA). In this study, ground gravity data from Korea Institute of Geoscience and Mineral Resource(KIGAM) and shipborne gravity data from National Ocean Research Institute(NORI) and Korea Ocean Research and Development institute(KORDI) were used. L-2 level GRACE Gravity Model (GGM02C) was also used for satellite gravity anomaly. The ground and shipborne surveyed data were combined and gridded using Krigging method with 0.05 degree interval and GRACE data were also gridded using the same method with 0.05 degree to harmonize with the resolution of SCHA that has coefficient up to 80. Generalized Minimal Residual(GMRES) inversion method was implemented for calculating the coefficients of SCHA using the gridded ground and satellite gravity anomalies that had 0 km and 50 km altitude, respectively. The results of inversion method showed good correlation of 0.950 and 0.995 with original ground and satellite data. The gravity anomaly using SCHA satisfies Laplace's equation, therefore, using these SCHA coefficients, gravity anomaly can be calculated at any altitude. In this study, gravity anomaly was calculated from 10 km to 60 km altitude and each altitude, very stable results were shown. The ground and shipborne gravity data that have higher resolution and satellite data in long wavelength are harmonized well with SCHA coefficients and successfully applied in South Korea area. If more continuous survey and muti-altitude surveyed data like airborne data available, more precise gravity anomaly can be acquired using SCHA method.

Aeromagnetic Interpretation of the Southern and Western Offshore Korea (한국 서남근해에 대한 항공자력탐사 해석)

  • Baag Czango;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.51-57
    • /
    • 1994
  • Analysis of the aeromagnetic data aquired by US Navy in the year 1969 permits us to predict a new sedimentary basin, Heugsan Basin, south of the known Gunsan Basin in Block Ⅱ. The basin appears to consist of three sub-basins trending NNW-SSE. The results of our analysis provide not only an independent assessment of the Gunsan Basin, but also new important information on the tectonic origin and mechanism for the two basins as well as for the entire region. The basin forming tectonic style is interpreted as rhombochasm associated with double overstepped left-lateral wrench faults. From the magnetic evidence, a few NE-SW trending major onshore faults are extended to the study area. We also interpreted the nature of the faults to be left-lateral wrenches. This new gross structural style is consistent with the results of recent Yeongdong Basin analysis by Lee. The senses of fault movement are also supported by the paleomagnetic evidence that the Philippine Sea had experienced an 80-degree clockwise rotation since the Eocene. Based on a 2 $\frac{1}{2}$ model study the probable maximum thickness of the sediments in the Gunsan Basin is approximately 7500 meters. We believe that the new Heugsan Basin was left unidentified because a high velocity layer may be overlying the basin. Because the overall structural configuration of the Heugsan Basin appears to be favorable for hydrocarbon accumulation, a detailed airborne magnetic survey is recommended in the area in order to verify the magnetic expression of this thick basin. A detailed subsequent marine gravity survey is also recommended in order to delineate the sedimentary section and to acquire supplemental data to the magnetic method only if an overlying high velocity layer is confirmed. Otherwise a high energy source seismic survey may be more effective.

  • PDF