• Title/Summary/Keyword: airborne electromagnetics

Search Result 2, Processing Time 0.014 seconds

Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan (접지된 전기 송신원을 이용한 일본 북동부 만다이 산에서의 시간영역 항공 전자탐사)

  • Mogi, Toru;Kusunoki, Ken'ichirou;Kaieda, Hideshi;Ito, Hisatoshi;Jomori, Akira;Jomori, Nobuhide;Yuuki, Youichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Airborne electromagnetics (AEM) is a useful tool for investigating volcanic structures because it can survey large and inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. The Grounded Electrical Source Airborne Transient Electromagnetic(GREATEM)survey system was developed to increase the depth of investigation possible using AEM. The method was tested in a survey at Mount Bandai in north-eastern Japan. Mount Bandai is an andesitic stratovolcano that rises 1819m above sea level. An eruption in July 1888 left a hoof-shaped collapsed wall in its northern crater and avalanche debris at its base. Previous surveys of Mount Bandai allow for comparisons of data on its structure and collapse mechanism as obtained by GREATEM and other geophysical methods. The results show resistive structures in recent volcanic cones and conductive structures in the collapsed-crater area. Conductive areas around the collapsed wall correspond to an alteration zone resulting from hydrothermal activity, supporting the contention that a major cause of the collapse associated with the 1888 eruption was hydrothermal alteration that structurally weakened the interior of the volcanic edifice.

The role of geophysics in understanding salinisation in Southwestern Queensland (호주 Queensland 남서부 지역의 염분작용 조사)

  • Wilkinson Kate;Chamberlain Tessa;Grundy Mike
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.78-85
    • /
    • 2005
  • This study, combining geophysical and environmental approaches, was undertaken to investigate the causes of secondary salinity in the Goondoola basin, in southwestern Queensland. Airborne radiometric, electromagnetic and ground electromagnetic datasets were acquired, along with data on soils and subsurface materials and groundwater. Relationships established between radiometric, elevation data, and measured material properties allowed us to generate predictive maps of surface materials and recharge potential. Greatest recharge to the groundwater is predicted to occur on the weathered bedrock rises surrounding the basin. Electromagnetic data (airborne, ground, and downhote), used in conjunction with soil and drillhole measurements, were used to quantify regolith salt store and to define the subsurface architecture. Conductivity measurements reflect soil salt distribution. However, deeper in the regolith, where the salt content is relatively constant, the AEM signal is influenced by changes in porosity or material type. This allowed the lateral distribution of bedrock weathering zones to be mapped. Salinisation in this area occurs because of local-andintermediate-scale processes, controlled strongly by regolith architecture. The present surface outbreak is the result of evaporative concentration above shallow saline groundwater, discharging at break of slope. The integration of surficial and subsurface datasets allowed the identification of similar landscape settings that are most at risk of developing salinity with groundwater rise. This information is now being used by local land managers to refine management choices that prevent excess recharge and further salt mobilisation.