• 제목/요약/키워드: airborne dust

검색결과 137건 처리시간 0.026초

석면 분석방법에 대한 고찰 (Review on asbestos analysis)

  • 함승헌;황성호;윤충식;박동욱
    • 한국산업보건학회지
    • /
    • 제19권3호
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

동산문화재 다량 보관처의 공기 중 부유 미생물 분포 조사 (A Survey for Distribution of Airborne Microorganisms in Storage of Movable Cultural Properties)

  • 홍진영;서민석;김수지;김영희;조창욱;이정민
    • 보존과학연구
    • /
    • 통권36호
    • /
    • pp.64-73
    • /
    • 2015
  • 동산문화재 보관처는 사찰과 문중 또는 개인 소유자가 관리하므로 전문적이고 체계적인 보존 관리가 부족하며 이로 인해 열악한 보존환경으로 이어질 수 있다. 실내 공기질에 부유하는 먼지와 미생물은 문화재에 생물학적 훼손을 발생시킨다. 본 연구에서는 다양한 동산문화재들이 보관되어 있는 10곳의 수장시설 또는 전시 및 보관시설에 대하여 실내 공기 중 부유 미생물의 분포 상태를 조사하였다. 그 결과, 수집된 미생물의 집락수는 조사 장소에 따라 큰 차이를 나타냈는데, 가장 미생물 오염이 심각했던 보관처는 전남 영암의 D 유물전시관으로 이곳은 모든 조사 지점에서 $2,000C.F.U/m^3$ 이상이 검출되었으며 대부분의 소장처에서는 $166C.F.U/m^3$ 이상의 진균이 부유하고 있는 것으로 확인되었다. 검출된 미생물을 동정한 결과, Aspergillus sp.와 Penicillium sp., Alternaria sp. Cladosporium sp.등이 공통적으로 확인되었으며 Ceriporia lacerata, Ganoderma carnosum, Myrothecium gramineum 와 Bjerkandera sp. 등과 같은 부후균도 동정되었다. 이러한 진균들은 문화재의 원형 손상 등의 문제를 발생시킬 수 있으므로 부유 진균 농도에 대한 권고기준을 제시하고 소장처의 보존환경 관리 시스템을 마련해야할 것으로 판단된다.

  • PDF

축분 퇴비화시스템 운용방식에 따른 실내 대기오염 평가 (Evaluation of Air Quality in the Compost Pilot Plant with Livestock Manure by Operation Types)

  • 김기연;최홍림;고한종;김치년
    • Journal of Animal Science and Technology
    • /
    • 제46권2호
    • /
    • pp.283-294
    • /
    • 2004
  • 본 연구는 환기 방식 및 교반 유무에 따른 축분 퇴비화 시스템 내 대기 및 작업 환경을 평가하기 위해 수행되었다. 측정대상 가스상 물질인 암모니아, 황화수소, 악취농도의 경우 자연환기-미교반시 2.45ppm, 19.96ppb, 15.8, 강제환기-미교반시 7.61ppmm 31.36ppb, 30.2, 자연환기-교반시5.50ppm, 14.69ppb, 46.4, 강제교화기- 교반시 30.12ppm, 39.91ppb, 205.5가 평균적으로 발생되는 것으로 분석되었다. 각 운용조건에 따른 흡입성 분진과 호흡성 분진의 평균 농도는 자연환기-미교반시 368.6${\mu}g$/$m^3$,96.0${\mu}g$/$m^3$, 강제화기-미교반시 283.9${\mu}g$/$m^3$, 119.5${\mu}g$/$m^3$, 자연환기-교반시 208.7${\mu}g$/$m^3$, 139.8${\mu}g$/$m^3$, 강제환기-교반시 209.2${\mu}g$/$m^3$, 131.7${\mu}g$/$m^3$인 것으로 조사되었다. 총 부유 박테리아와 곰팡이의 경우 자연환기-미교반시 28,673cfu/$m^3$, 22,507cfu/$m^3$, 강제환기-미교반시 7,462cfu/$m^3$,3,229cfu/$m^3$, 자연환기-교반시 19,592cfu/$m^3$, 26,376.29cfu/$m^3$, 강제환기-교반시 18,645cfu/$m^3$, 24,581cfu/$m^3$가 평균적으로 발생되는 것으로 분석되었다. 대체로 가스상 물질은 자연환기와 교반을 하지 않는 경우보다 강제환기와 교반을 하는 경우에 더 많이 발생되는 경향을 보였다. 또한 흡입성 분진과 총 부유박테리아의 경우, 자연환기-미교반시에 대체로 더 높게 발생된 반면, 호흡성 분진과 총 부유곰팡이의 경우 강제환기-교반시에 더 많이 발생되는 경향을 보였다. 내부 온도와 상대습도는 입자상 물질과 생물학상 오염물질 발생에 영향을 주는 것으로 분석되었고, 암모니아와 황화수소는 축분 퇴비화시 발생되는 악취 원인물질로 입증되었다. 물리적 요인인 온도와 상대습도는 축분 퇴비화 시스템내에서 주로 입자상 오염물질과 생물학상 오염물질의 발생량에 영향을 미치는 주요인자로 입증되었는데, 시스템 내부 온도와 상대습도가 높으면 이것들의 농도도 높아지는 것으로 분석되었다.

울산지역 치과기공사들의 화학적 유해요인 노출 평가 (Exposure Assessment of Hazardous Chemical Agents for Dental Technicians in Ulsan City)

  • 홍영호;최상준
    • 한국산업보건학회지
    • /
    • 제21권4호
    • /
    • pp.215-221
    • /
    • 2011
  • Objectives: This study was conducted to evaluate the exposure level of hazardous chemical agents for dental technicians in Ulsan. Methods: We measured airborne total dusts and metals such as Nickel, Manganese, Cobalt, and Chromium in 10 dental laboratories by the NIOSH Methods 0500 and 7300, respectively. Methyl methacrylate (MMA), a key ingredient in acrylic resin, was also monitored using passive samplers for long-term sampling and Tenax tubes for short-term sampling. Results: Measured levels of all items were below 10% of the Korean exposure limit except for Nickel. The geometric mean concentration and geometric standard deviation of total dust, Nickel, and MMA were $0.14mg/m^3$ (2.16), $165.3{\mu}g/m^3$ (3.31), and 0.2 ppm (2.5) respectively. Airborne Nickel concentration of two dental laboratories exceeded the exposure limit ($1000{\mu}g/m^3$). The major emission sources of Nickel were metal trimming and casting processes. Conclusions: We found that Nickel, a carcinogen, should be controled most urgently to protect dental technicians.

대체용매를 이용한 금속가공유 측정방법 타당성 평가 (Validation of an Extraction Method for the Determination of Airborne MWFs using Alternative Solvents)

  • 정지연;백남원
    • 한국산업보건학회지
    • /
    • 제16권2호
    • /
    • pp.91-100
    • /
    • 2006
  • The purpose of this study was to validate alternative method by using non-carcinogenic, and less toxic solvents than NIOSH analytical method 5524 for measuring the airborne MWFs in workplaces. In laboratory tests, the ETM solvents(mixture of same volume for ethyl ether, toluene, and ethanol) were selected. The alternative method of analyzing MWFs, referred to as the ETM solvent extraction method, showed 0.04 mg/sample as LOD, and 0.15 mg/sample as LOQ. The analytical precision (pooled CV, coefficient of variation) of the ETM solvent extraction method for analyzing the straight, soluble, semisynthetic, and synthetic metalworking fluid was 1.5%, 2.0%, 2.6%, 1.6%, respectively, which was similar to the precision (2.6%) of NIOSH analytical method (NIOSH 0500) for total dust. The analytical accuracy by recovery test, spiked mass calculated as extractable mass, was almost 100%. As the result of storage stability test, metalworking fluid samples should be stored in refrigerated condition, and be analyzed in two weeks after sampling. The 95% confidence limit of the estimated total standard error for the ETM solvent extraction method for analyzing the straight, soluble, semisynthetic, and synthetic metalworking fluid was ${\pm}12.6%$, ${\pm}12.5%$, ${\pm}14.0%$, and ${\pm}13.6%$, respectively, which satisfied the OSHA sampling and analytical criteria.

동북아 오염물질 장거리이동 분석을 위한 서울시 대기 중 라돈농도의 시계열적 특성에 관한 연구 (Time Series Observations of Atmospheric Radon Concentration in Seoul, Korea for an Analysis of Long-Range Transportation of Air Pollutants in the North-East Asia)

  • 김윤신;이철민;김기연;전형진;김종철
    • 한국환경보건학회지
    • /
    • 제33권4호
    • /
    • pp.283-292
    • /
    • 2007
  • Atmospheric concentrations of radon had been continuously observed in Seoul, Korea since December 1999, as a tracer for long-range transport of air pollutants from China continent to Korea. In order to study radon as a tracer of long-range transport, it is important to know information about the atmospheric distribution and variation of radon concentration and its time variation. Atmospheric radon concentration are measured with electrostatic radon monitor(ERM) at Hanyang University located in Eastern area of Seoul. Air sample is taken into a vessel of ERM, and alpha particles emitted by radon daughters $Po^{218}$ are detected with ZnS(Ag) scintillation counter. Hourly mean concentrations and hourly alpha counts are recorded automatically. The major results obtained from time series observation of atmospheric radon were as follows : (1) The mean of airborne radon concentration in Seoul was found to be $7.62{\pm}4.11\;Bq/m^3$ during December $1999{\sim}January$ 2002. (2) The hourly variation of radon concentrations showed the highest in 8:00AM ($8.66{\pm}4.22\;Bq/m^3$) and the lowest in 3:00AM ($6.62{\pm}3.70\;Bq/m^3$) and 5:00AM ($6.62{\pm}3.39\;Bq/m^3$). (3) the seasonal variation of radon concentrations showed higher during winter-to-fall and lower during summer-to-spring. (4) Correlation between airborne radon concentration and the meteorological factors were -0.21 for temperature, 0.09 for humidity, -0.20 for wind speed, and 0.04 for pressure. (5) The mean difference of airborne radon concentration between Asian dust ($5.36{\pm}1.28\;Bq/m^3$) and non-Asian dust ($4.95{\pm}1.49\;Bq/m^3$) phenomenon was significant (p=0.08). We could identify time series distribution of radon concentration related meteorological factors. In addition, radon can be considered a good natural tracer of vertical dispersion and long-range transport.

우리나라 중소기업 도금공정 근로자의 크롬 및 세척제 폭로에 관한 연구 (A Study on Worker Exposure to Chromium and Degreasing Solvent at Eleetroplating Operation in Small Industry in Korea)

  • 백남원;정문식;이흥근;윤충식;정회경;이경희;이나루
    • 한국산업보건학회지
    • /
    • 제3권1호
    • /
    • pp.110-126
    • /
    • 1993
  • Worker exposures to total chromium, hexavalent chromium (VI), sulfuric acid and alkaline dust at electroplating operations and worker exposures to trichloroethylene (TCE) and methyl chloroform (MCM) at degreasing operations in eleven small industrial plants were evaluated. Appropriate local exhaust ventilation systems for both operations were designed and recommended. Results of the study are summarized as follows ; 1. Out of 134 measurements for airborne hexavalent chromium concentrations, seven were exceeding the Korean occupational health standard of $50{\mu}g/m^3$ and 45 were exceeding the NIOSH standard of $1{\mu}g/m^3$. With an exception of one measurement, concentrations of total chromium were below the Korean standard of $500{\mu}g/m^3$. 2. Worker exposures to chromium were closely related to the existing control methods at the electroplating operations. Local exhaust systems, partial coverage of the tank surface, and antifoaming agents on liquid surface were adopted as control methods. 3. With an exception of one sample, airborne concentrations of sulfuric acid and alkaline dusts were below the applicable occupational heatlth standards. 4. Three plants indicated that airborne concentrations of TCE and MCM were exceeding the Korean standards. Other plants showed lower concentrations than the standards. It should be noted that generally, the activities and workloads on the day of surveys were less than normal. 5. Since the most existing ventilation systems did not satisfy the ACGIH criteria, the ventilation systems should be improved. Some examples for designing appropriate ventilation systems are presented.

  • PDF

Microbial Exposure Assessment in Sawmill, Livestock Feed Industry, and Metal Working Fluids Handling Industry

  • Park, Hyun-Hee;Park, Hae-Dong;Lee, In-Seop
    • Safety and Health at Work
    • /
    • 제1권2호
    • /
    • pp.183-191
    • /
    • 2010
  • Objectives: The objective of this study is to investigate the distribution patterns and exposure concentrations of bioaerosols in industries suspected to have high levels of bioaerosol exposure. Methods: We selected 11 plants including 3 livestock feed plants (LF industry), 3 metal working fluids handling plants (MWFs industry), and 5 sawmills and measured total airborne bacteria, fungi, endotoxins, as well as dust. Airborne bacteria and fungi were measured with one stage impactor, six stage cascade impactor, and gelatin filters. Endotoxins were measured with polycarbonate filters. Results: The geometric means (GM) of the airborne concentrations of bacteria, fungi, and endotoxins were 1,864, $2,252\;CFU/m^3$, and $31.5\;EU/m^3$, respectively at the sawmills, followed by the LF industry (535, $585\;CFU/m^3$, and $22.0\;EU/m^3$) and MWFs industry (258, $331\;CFU/m^3$, and $8.7\;EU/m^3$). These concentrations by industry type were significantly statistically different (p < 0.01). The ratio of indoor to outdoor concentration was 6.2, 1.9, 3.2, and 3.2 for bacteria, fungi, endotoxins, and dust in the LF industry, 5.0, 0.9, 2.3, and 12.5 in the MWFs industry, and 3.7, 4.1, 3.3, and 9.7 in sawmills. The respiratory fractions of bioaerosols were differentiated by bioaerosol types and industry types: the respiratory fraction of bacteria in the LF industry, MWF industry, and sawmills was 59.4%, 72.0%, and 57.7%, respectively, and that of fungi was 77.3%, 89.5%, and 83.7% in the same order. Conclusion: We found that bioaerosol concentration was the highest in sawmills, followed by LF industry facilities and MWFs industry facilities. The indoor/outdoor ratio of microorganisms was larger than 1 and respiratory fraction of microorganisms was more than 50% of the total microorganism concentrations which might penetrate respiratory tract easily. All these findings suggest that bioaerosol in the surveyed industries should be controlled to prevent worker respiratory diseases.

정전기적 힘을 이용한 실내공기 미세부유먼지 제거 요소기술의 개발을 위한 기술별 시장현황 및 연구 동향 분석 (Analyses of the current market trend and research status of indoor air quality control to develop an electrostatic force-based dust control technique)

  • 윤영한;주진철;안호상;남숙현
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6610-6617
    • /
    • 2013
  • 본 연구에서는 실내공기 오염물질의 제어를 통하여 공기질을 개선 할 수 있는 요소기술의 개발을 위하여 최근의 관련 기술 및 시장 현황을 살펴보고, 실내공기질 오염물질의 특성과 최근에 이루어진 연구를 바탕으로 실내공기질 제어 기술의 특징 및 장 단점을 분석하였다. 적용기술에 따른 공기청정장치의 종류 중에는 현재 필터를 이용한 기계식 여과기술 및 장치산업이 대부분을 차지하고 있으나, 최근에는 설치와 작동이 간편하고 에너지 효율과 기술의 적용성도 좋은 전기전자식 기술이 주목받고 있으며 기계식 장치(5.5%), 이온화 장치(-0.3%), 오존청정(-0.5%) 등 다른 기술에 비하여 향후 시장 발전가능성(성장률 6.3%)이 높은 것으로 분석되었다. 실내 공기질의 오염은 가스상의 VOCs와 입자상의 미세먼지들이 주 원인물질인데 특히 입자가 매우 작은 미세먼지들은 그 특성으로 인체 내부에 깊숙이 침투하여 건강을 위협하고 가스상 오염물질과 반응하여 2차 오염물질을 낼 수 있어 근본적인 제어 기술이 필요하다. 전기전자식 기술 중 유전영동 및 정전기력을 이용한 먼지 제어 기술은 전기적으로 미세먼지와 같은 입자를 부유시켜 제어하는 기술로서 미세부유먼지에 많은 사람들이 노출될 수 있는 다중이용시설 등에 적용될 수 있으며 이를 위해 실내 온도 및 습도, 대상물질의 수분 함량과 같은 주변 조건에 의한 부유먼지의 이동 특성이 함께 고려되어야 한다. 미세 부유먼지를 효과적으로 제어할 수 있는 전기전자식 기술을 이용하여 다중이용시설 뿐 아니라 사무실 및 일반가정 등의 실내 공기질 개선을 위한 핵심기술로 발전할 수 있는 가능성이 높을 것으로 판단된다.

국내 업종별 결정형 유리규산 노출 평가 (Evaluation of Crystalline Silica Exposure Level by Industries in Korea)

  • 연동은;최상준
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.398-422
    • /
    • 2017
  • Objectives: The major aim of this study is to construct the database of retrospective exposure assessment for crystalline silica through reviews of literatures in South Korea. Methods: Airborne concentrations of crystalline silica were collected using an academic information search engine, Research Information Service System(RISS), operated by the Korea Education & Research Information Service(KERIS). The key words used for the literature search were 'silica', 'crystalline silica', 'cristobalite', 'quartz' and 'tridymite'. A total number of 18 published documents with the information of crystalline silica level in air or bulk samples were selected and used to estimate retrospective exposures to crystalline silica. Weighted arithmetic mean(WAM) calculated across studies was summarized by industry type. Industries were classified according to Korea Standard Industrial Classification(KSIC) using information provided in the literature. Results: A total of 2,131 individual air sampling data measured from 1987 to 2012 were compiled. Compiled individual measurement data consisted of 827 respirable crystalline silica (RCS), 31 total crystalline silica(TCS), 24 crystalline silica(CS), 778 respirable dust(RD) and 471 total dust(TD). Most of RCS measurements(68.9%) were collected from 'cast of metals(KSIC 243)'. Comparing industry types, 'mining coal and lignite(KISC 051)' showed the highest WAM concentration of RCS, $0.14mg/m^3$, followed by $0.11mg/m^3$ of 'manufacture of other non-metallic mineral products(KSIC 239)', $0.108mg/m^3$ of 'manufacture of ceramic ware(KSIC 232)', $0.098mg/m^3$ of 'heavy construction(KSIC 412)' and $0.062mg/m^3$ of 'cast of metals(KSIC 243)'. In terms of crystalline silica contents in airborne dust, 'manufacture of other non-metallic mineral products(KSIC 239)' showed the highest value of 7.3%(wt/wt), followed by 6.8% of 'manufacture of ceramic ware(KSIC 232)', 5.8% of 'mining of iron ores(KSIC 061)', 4.9% of 'cast of metals(KSIC 243)' and 4.5% of 'heavy construction(KSIC 412)'. WAM concentrations of RCS had no consistent trends over time from 1994 ($0.26mg/m^3$) to 2012 ($0.12mg/m^3$). Conclusion: The data set related RCS exposure level by industries can be used to determine not only the possibility of retrospective exposure to RCS, but also to evaluate the level of quantitative retrospective exposure to RCS.