• 제목/요약/키워드: air-sea interaction

검색결과 51건 처리시간 0.026초

Estimation of the air temperature over the sea using the satellite data

  • Kwon B. H.;Hong G. M.;Kim Y. S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.392-393
    • /
    • 2005
  • Due to the temporal and spatial simultaneity and the high-frequency repetition, the data set retrieved from the satellite observation is considered to be the most desirable ones for the study of air-sea interaction. With rapidly developing sensor technology, satellite-retrieved data has experienced improvement in the accuracy and the number of parameters. Nevertheless, since it is still impossible to directly measure the heat fluxes between air and sea, the bulk method is an exclusive way for the evaluation of the heat fluxes at the sea surface. It was noted that the large deviation of air temperature in the winter season by the linear regression despite good correlation coefficients. We propose a new algorithm based on the Fourier series with which the SST and the air temperature. We found that the mean of air temperature is a function of the mean of SST with the monthly gradient of SST inferred from the latitudinal variation of SST and the spectral energy of air temperature is related linearly to that of SST. An algorithm to obtain the air temperature over the sea was completed with a proper analysis on the relation between of air temperature and of SST. This algorithm was examined by buoy data and therefore the air temperature over the sea can be retrieved based on just satellite data.

  • PDF

2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석 (Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016)

  • 이재근;민기홍
    • 대기
    • /
    • 제28권1호
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.

東海海面 熱交換에 影響을 미치는 大氣 및 海洋的 要因 (Atmospheric and Oceanic Factors Affecting the Air-Sea Thermal Interactions in the East Sea (Japan Sea))

  • 강용규
    • 한국해양학회지
    • /
    • 제19권2호
    • /
    • pp.163-171
    • /
    • 1984
  • 대기 및 해양적 요인들이 동해의 해면을 통한 열교환에 미치는 영향을 구명 하기 위하여, 해양의 열수지에 근거한 해석적인 모델을 만들고, 이 모델을 통하여 동해상 해면 열교환의 각 성분과 대기 온도의 연변화를 해석적으로 재현 (simulation) 하였다. 모델에 의한 이론적인 결과에 의하면, 동해에서 난류에 의한 열수송이 클수록 열복사, 잠열 및 현열의 방출이 증가한다. 그리고 표면수온이 증 가 함에 따라 잠열은 증가하지만, 역복사와 현열은 감소한다. 동해에서 연평균 수온이 1$^{\circ}C$ 증가하면 해상 기온의 연평균이 1.2$^{\circ}C$ 증가하는 효과를 가져오며, 해양의 저열량의 크기는 해면을 통한 열교환의 연변화에 지대한 영향을 미친다.

  • PDF

기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구 (A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model)

  • 한용재;이호재;김진우;구자용;이윤균
    • 한국지구과학회지
    • /
    • 제40권6호
    • /
    • pp.584-598
    • /
    • 2019
  • 본 연구에서는 지역 기상-해양 접합모델을 이용하여 2018년 8월 28일부터 30일까지 한반도 서울-경기지역에 내린 강수에 대해 대기-해양 상호작용의 효과를 분석하였다. 지역 기상-해양 접합모델에서 기상모델은 WRF (Weather Research Forecasts)가 사용되었으며, 해양모델은 ROMS (Regional Oceanic Modeling System)가 사용되었다. 단일 기상 모델은 WRF모델만 이용되었으며, ECMWF Re-Analysis Interim 의 해수면온도자료가 바닥경계자료로 사용되었다. 관측자료와 비교하여, 대기-해양 상호작용의 효과가 고려된 접합모델은 서울-경기지역의 강수 및 황해 해수면온도에 대해 공간상관계수가 각각 0.6과 0.84로 이는 지역 기상모델보다 높게 나타났다. 또한, 평균편향오차(MBE, Mean Bias Error)은 각각 -2.32와 -0.62로 지역 기상모델 보다 낮은 오차율을 보였다. 상당온위와 해수면온도 및 역학적 수렴장으로 분석한 대기-해양 상호작용의 효과는 황해 해수면온도의 변화를 유도하였고, 그 변화는 하층대기에서 열적 불안정과 운동학적 수렴대의 차이를 발생시켰다. 열적 불안정과 수렴대는 결과적으로 서울-경기 지역에서 상승운동을 유도하였고, 결과적으로 기상-해양 접합모델에서 모의된 강수가 관측과 더 유사한 공간분포를 나타냈다. 그러나 복잡한 관계에 있는 대기-해양 상호작용의 효과를 더 명확히 파악하기 위해서는 다양한 사례연구와 장기적인 분석이 필요하지만, 본 연구는 기상-해양 상호작용이 강수 예보에 중요성에 대한 또 다른 증거를 제시한다.

PHYTOPLANKTON BLOOMING AND OCEANIC CONDITIONS IN THE SEAS AROUND THE SPRATLY ISLANDS

  • Dien, Tran Van;Tang, DanLing;Kawamura, Hiroshi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.529-532
    • /
    • 2006
  • The oceanic currents in the South China Sea (SCS) are strongly influenced by monsoon winds. A review on the SCS currents has indicated that previous studies have pointed out an anticyclonic circulation in the area between the southern Vietnam coast and the Spratly Islands. However, its detail is not understood because of less information of in situ observations. The physical-biological interaction is quite new research area, which has been established and promoted by means of the ocean color remote sensing. Temporal/spatial variability of the phytoplankton activities are well captured by ocean color (OC) -derived Chlorophyll-a images. Combining the OC-Chl-a and the other high-resolution satellite data (e.g., SST images), the biological aspects of oceanographic variation is well described. The blooming phenomena in the area between the southern Vietnam coast and the Spratly islands are further investigated. Change in the wind-system related to the El Nino generates upwelling/SST-cooling in the sea south of the Spratly Islands through the air-sea-land interaction was studied. The seasonal upwelling is also associated with the harmful algal bloom (HAB) off two side of Indochina Peninsula have investigated. The seasonal variation of SCS phytoplankton blooming and related oceanic conditions in Vietnam coast was observed. Ocean color satellite data has effective contribute to study the oceanic condition and phytoplankton blooming in South China Sea.

  • PDF

Surface Heat Flux and Oceanic Heat Advection in Sendai Bay

  • Yang Chan-Su;Hanawa Kimio
    • 대한원격탐사학회지
    • /
    • 제22권1호
    • /
    • pp.11-24
    • /
    • 2006
  • Coastal sea surface temperature (CSST) and meteorological data from January through December 1995 are used to estimate the net surface heat flux and heat content for Sendai Bay. The average annual surface heat flux in the area north of the bay is estimated to be $+35Wm^{-2}$, whereas the southwestern area is estimated to be $+56Wm^{-2}$. Therefore, the net surface heat flux shows a net gain of heat over the whole bay. The largest heat gain occurs near Matsukawaura, where the strong Kuroshio/Oyashio interaction produces anomalously cold SST and wind is more moderate than in other regions of Sendai Bay over most of the year. The lowest heat gain occurs around Tashiro Island, where the temperature difference between air and sea surface is lower and wind is stronger. The heat budget shows that both surface forcing and horizontal advection are potentially important contributors to the seasonal evolution of CSST in the bay. From the A VHRR and SeaWiFS data, it is found that offshore conditions between the bay and Eno Island are different due to the presence of the Ojika Peninsula. It is also shown that the temporal behaviors of SSTs in the bay are closely connected with the air-sea heat flux and offshore conditions.

복잡지형에서 도시화에 따른 대기오염 확산에 관한 시뮬레이션 (Random Walk Simulation of Atmospheric Dispersion on Surface Urbanization over Complex Terrain)

  • 이순환;이화운;김유근
    • 한국대기환경학회지
    • /
    • 제18권2호
    • /
    • pp.67-83
    • /
    • 2002
  • The coupled model (SMART) of dynamic meteorology model and particle dispersion model was developed. The numerical experiment on the relationship between change of land use and diffusion behavior in complex terrain was carried out using this model. It tried to investigate the change of particle diffusion behavior and local weather under the condition in which land-land breeze and sea breeze and mountain breeze intermingled. The numerical experiment results are as follows; 1) The more complicated local circulation field of the interaction of sea breeze, mountain breeze and Land -land breeze is formed. Then, the region circulation in which the urbanization is specific by location of the region is strengthened and is weakened. 2) Though in the region with dominant sea breeze, Land-land breeze does not appear directly, the progress of the sea wind to the inland is affected. 3) In the prediction of the air diffusion, emission high quality and accurate information of the emission site are important. That is to say, the dispersion predicting result which emission high quality and small error of the site perfectly vary for Land - land breeze in the effect may be brought about.

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF