• Title/Summary/Keyword: air-inflated space thickness

Search Result 3, Processing Time 0.017 seconds

Characteristics of Heat Transmission Variation by Air Space Thickness and Injected Air Temperature in Air-Inflated Double Layers Film (공기막 이중필름의 공기막 두께와 주입공기 온도에 따른 관류전열량 변화 특성)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Lee, Sang-Ho;Yun, Nam-Kyu;Yoo, Ju-Yeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.121-125
    • /
    • 2013
  • This study was carried out to provide a valuable reference which could reduce heating loss of air-inflated double PO film. Therefore, this study was aimed to choose the best air space thickness and injected air temperature. The characteristics of heat transmission variation at experimental materials were measured and analysed in the laboratory. The experiment was conducted of two layers of PO film, each 0.15 mm tick, sandwiching 110, 175, 225 mm of inflated air with 1 m sides. Environmental control lab was constantly controlled with $-10^{\circ}C$ and experiment chamber was constantly changed with 0, 5, 10, $15^{\circ}C$. The analysis of heat transfer showed that heat transmission does not have a direct correlation with Air Space thickness and injected air temperature. But when inside and outside temperature difference of chamber was great, supply of outside air to Air Space had an advantage at reduction of heating load. It was required to examine accurate analysis at a real greenhouse.

Fundamental Experiments for Design of Air Inflating Apparatus of Air-Inflated Double-Layer Plastic Greenhouse (공기주입 이중피복 플라스틱온실의 공기주입장치 설계를 위한 기초실험)

  • Lee, H.W.;Nam, H.S.;Sim, S.Y.;Nam, S.W.;Kim, Y.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.19-24
    • /
    • 2009
  • This study was conducted to provide fundamental data for design of air inflating apparatus of air-inflated double-layer plastic greenhouse. The variation of static pressure in air tube for different fans and filters, filtering performance for various kinds of filters and destruction phase of experimental greenhouse collapsed by excessive static pressure in air space were analyzed. The general type of forward centrifugal fan was recommended for inflating air space in air-inflated double-layer plastic greenhouse. The experimental greenhouse was collapsed down by excessive static pressure just like fallen by heavy snow load acting on it. The static pressure in air tube without filter decreased linearly as the number of outlet openings increased. But the pressure in air tube with filter declined quadratically, the decremental ratio diminished by the increase of outlet openings. The higher filtering efficiency and the greater decrements of static pressure in air tube, the larger capacity fan was required for maintaining proper static pressure in air space. Because the porosities of filter were blocked by dust as time goes by, the static pressure in air tube with filter decreased. The higher filtering efficiency, the less decremental ratio of static pressure in air tube as time passes by. Considering the filtering efficiency, decrement of static pressure and thickness of filter, the 5mm thickness filter of 75% efficiency was recommended for air inflating filter of air-inflated double-layer plastic greenhouse.

Analysis of Heat Transmission Characteristics through Air-Inflated Double Layer Film by Using Thermal Resistance Equation (열저항식을 이용한 공기막 이중필름의 관류전열량 특성 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Lee, Sang-Ho;Yun, Nam-Kyu;Yoo, Ju-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.316-321
    • /
    • 2013
  • This study was carried out to analyze heat transfer characteristics and heat flow through air-inflated double layer PO film with thermal resistance method. The experiments was conducted in the laboratory controlled air temperature between 258.0 K and 278.0 K. The experimental materials were made up two layers PO film and an inflated-air layer. The thickness of air-inflated layer was fixed at 3 types of 110, 175, 225 mm. The electrical circuit analogy for heat transfer by conduction, radiation and convection was introduced. Experimental data shows that the dominant thermal resistance in heat transfer through the air-inflated double layer film was convection. Calculation errors were 1.1~18.5 W for heat flow. In result, the method of thermal resistance could be introduced for analysis of heat flow characteristics through air-inflated double layer film.