• Title/Summary/Keyword: air vehicle

Search Result 1,553, Processing Time 0.025 seconds

Exposure to PM10 and Carbon Monoxide (CO) Associated with Automobile Travels (자동차 운행과 관련한 PM10 및 일산화탄소 노출 평가)

  • 조완근;이진우
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.321-329
    • /
    • 2001
  • This study included three experiments to evaluate in-vehicle exposures to PM10 and CO: 1) evaluation of in-passenger car exposures, 2) evaluation of in-public bus exposures, and 3) simultaneous evaluation of in-passenger car and in -university bus exposures. The tests of four factors (transportation mode, passenger-car type, commute period, and commute season were focused. A total of 40 actual passenger car commuters, 20 public bus commuters, and four university buses were recruited or surveyed. The same commuters ware participated in both the summer and winter studied. Two factory such as transportation mode and passenger-car type were found to have little effect on the in-vehicle levels of PM10 and CO. Commute period was found to have little effect on the in-vehicle CO levels. Conversely, the other factor, commuting season was found to influence on the in-vehicle levels of PM10 and CO. The present study also confirmed that under the Korean commute conditions, vehicle interiors are an important microenvironment for exposure to PM10 and CO. This was supported by finding that the in-vehicle Air levels were much higher than ambient air levels reported by several previous studies. The mean in -vehicle PM10 concentrations were 114 and 103$\mu\textrm{g}$/m$^3$for passenger cars and public buses, respectively. For CO, the mean in-vehicle concentrations were 2.9 and 2.6 ppm for passenger cars and public louses, respectively.

  • PDF

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.

Potential Exposure of Indoor Air Pollutants inside Vehicle for Professional Taxi Drivers (영업용 택시 운전자들의 공기오염물질 노출평가)

  • Yang Won-Ho;Kim Dae-Won;Kim Young-Hee;Kim Jong-Oh
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.69-75
    • /
    • 2005
  • Professional taxi driver exposure to indoor air pollutants has been a subject of concern in recent years because of higher levels of air pollutants, comparing to the surrounding atmosphere. This study evaluated the potential exposure to respirable suspended particulate (RSP), nitrogen dioxide $(NO_2)$ and volatile organic compounds (VOCs; benzene and toluene) for professional taxi drivers inside each of 10 vehicles in Pusan, comparing weekday (Monday and Thursday) and weekend (Saturday). Indoor mean concentrations of RSP inside vehicle were $53.88\;ug/m^3\;and\;75.52\;ug/m^3$ on weekday and weekend, respectively. Measured indoor $NO_2$ concentrations were 28.32ppb and 40.69 ppb, respectively. Benzene and toluene mean concentrations inside vehicle were 5.41 ppb and 11.36 ppb, respectively. Considering no smoking of taxi drivers inside vehicle, closed window in winter, and increased usage of taxi on weekend, source of indoor air pollutants inside taxi might be mainly suggested from the number of passenger's carried, faulty exhaust systems, and engine and carburetor evaporative emissions.

Aerodynamic Design and Analysis of a Propeller for a Micro Air Vehicle

  • Cho Lee-Sang;Yoon Jae-Min;Han Cheol-Heui;Cho Jin-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1753-1764
    • /
    • 2006
  • A U-80 propeller and its modified version, U-75 propeller, are used for a micro air vehicle. The performance characteristics of a U-80 propeller and a U-75 propeller have not much known in the published literature. Thus, their aerodynamic characteristics are investigated using a lifting surface numerical method. The lifting surface method is validated by comparing computed results with measured data in a wind tunnel. From the computed results, it is found that the U-75 propeller produces larger thrust with higher efficiency than the U-80 propeller. To enhance the performance of these propellers, a new propeller is designed by following the sequential design procedures with the design parameters such as hub-tip ratio, maximum camber and its position, and chord length distribution along the radial direction. The performance of the designed propeller is shown to be improved much comparing with those of both the U-80 and U-75 propellers.

An Influence on the City Noise of Colonial Joseon by the Motor Vehicle Horn (자동차 경음 기술이 식민지 조선의 도시소음에 미친 영향)

  • Shin, Myung-Ho;Sohn, Jeong-Hyun;Chae, Young-Hee
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.111-122
    • /
    • 2013
  • After the port opening in 1876, the western people made joseon image as the land of morning calm. there was a conception that joseon was a uncultivated country in the meaning of the land of morning calm. famous modernists such as gil-jun yu, kwang-su lee also had same conception. but such conception began to change in 1930's. the number of motor vehicle began to increase rapidly in 1930's. and also many of motor vehicle were equipped with air horn or electronic horn instead of bulb horn. bulb horn made thick and low rubber sound. but air horn or electronic horn made sharp and high metallic sound. city people of colonial joseon began to recognize air horn or electronic horn as city noise. so they tried to control the use of air horn or electronic horn. finally, in late 1930's, the use of air horn and electronic horn were prohibited.

An Experimental Study on the Benefit of Pre-ventilation Using Solar Sunroof (쏠라 썬루프를 이용한 주차환기 시스템의 효과에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.89-95
    • /
    • 2014
  • This study presented the benefit of the pre-ventilation using solar sunroof with integrated photovoltaic. Recent year, auto-makers make an effort to enhance the fuel efficiency and moreover to clean the cabin passenger's health. Solar energy, one of the alternative energies, adapted in automotive air handling system, in order to pre-ventilation when vehicle parked under the sun in summer. The power generated by a prototype solar sunroof has been used to run blower in a air handing system. And the solar sunroof was installed in a vehicle, and evaluated to find out benefit of the pre-ventilation. The effect of reducing the cabin temperature about $3^{\circ}C{\sim}10^{\circ}C$ with 20 ~ 40W power generator from solar sunroof were obtained in the pre-ventilation test. This reduced thermal load can lead to the reduction of air-conditioning operation time than that of current car. Moreover, fuel economy may increase as a results of the short use of the air-conditioning time. Additionally, Total Volatile Organic Compounds in the cabin is reduced maximum 80% than that of the current vehicle.

A Change of Three-Dimensional Vortical Structures by an Air Spoiler in the Wake of a Road Vehicle (에어 스포일러 장착에 따른 자동차 후류 3차원 와 구조의 변화)

  • Kim Jin-Seok;Sung Jae-Yong;Kim Sung-Cho;Kim Jeong-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 2006
  • A change of three-dimensional vortical structures on the wake behind a road vehicle has been investigated according to the existence of an air spoiler. To reconstruct the three-dimensional velocity fields, two-dimensional PIV(particle image velocimetry) measurements were performed for lots of the x-y, y-z and z-x planes. Since the isovorticity surface does not represent exactly the vortical structures within the recirculation region due to strong shear flows, the velocity component normal to the x-y plane is obtained by interpolating those velocities in the z-x plane. Then, the ${\lambda}_2-definition$ is applied to visualize the vortices in the recirculation region. As a result, it is found that the air spoiler weakens C-pillar vortices and produces strong wing-tip vortices. Inside the recirculation region, the height and volume of coherent vortices are increased relatively when an air spoiler is equipped. On the other hand, two small coherent vortices are observed in case that an air spoiler is absent.

  • PDF

An Efficient Fluid-Thermal Integrated Analysis for Air-Intake Structure Design of a High Speed Air Vehicle (고속 비행체 공기흡입관 구조설계를 위한 효율적 유체-열 통합해석 연구)

  • Chun, Hyung-Geun;Ryu, Dong-Guk;Lee, Jae-Woo;Kim, Sang-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.8-17
    • /
    • 2015
  • In this research, low fidelity air/heat load analysis was conducted for the intake of high speed vehicle. For air/heat load calculations, aerodynamic properties at the surface and the boundary layer edge were estimated using Taylor-Maccoll equation for conical flow, shockwave relation and Prandtl-Meyer expansion equation for internal and external flow. Couette flow assumption and Reynolds analogy were used in order to calculate convective heat transfer coefficient. In order to calculate skin friction coefficient for heat transfer coefficient analysis, Van Driest method II and Reference Enthalpy method were considered. An axis symmetric SCRAMJET model was selected as a reference configuration for verifying the proper implementation of the present method. Comparison of the results using the present method and Computational Fluid Dynamic analysis showed that the present method is valuable for efficiently providing pressure and heat loads for air-intake structure design of the high speed air vehicle.

Road Dust Emissions from Paved Roads Measured by Road Dust Monitoring Vehicle and Analysis of Trace Elements (도로 재비산먼지 이동측정차량을 이용한 도로 재비산먼지 측정과 도로먼지 미량원소 분석)

  • Lee, Myung-Hwoon;Shin, Jung-Sub;Shin, Won-Geun;Lee, Sang-Gu;Kim, Cheong;Lee, Chang
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Paved road dust emissions were investigated 14 times on 12 main roads in Seo-Cho Gu, Seoul, Korea by vehicle-based mobile sampling system(Road Dust Monitoring System) during September to December 2011. Also, fourteen heavy metals present in the dust samples were analyzed by ICP. ICP analysis showed that one of major source of the road dust would be urban construction. A large amount of silt was found, which might be originated mainly from building construction and open beds of trees. Trace element and pollution indices of heavy metals(Cd, Cu, Ni, Pb, Zn) on the roads adjacent to the commercial area had higher concentrations than those on the roads adjacent to the construction and residential areas because of traffic density and heavy traffic.

Convergent Investigation with Internal Flow Analysis According to the Opening and Closing of Vehicle Window (차량 창문 개폐에 따른 내부에서의 유동 해석으로의 융합적 고찰)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.155-160
    • /
    • 2020
  • In this study, the pleasant driving environment of the driver and passenger in the summer was investigated through the internal flow analysis of air due to the opening and closing of the car windows. The conditions on the entrance of the air conditioner with the opening and closing status of vehicle window were applied to the flow analysis by taking into consideration the actual driving environment. The automotive air conditioning outlet, the seat and the inside of car were modeled. As the air flow inside the car was analyzed, the air flow configuration and the temperature distribution were examined. In this analysis, the results were taken in consideration of only the effects of internal air and the opening and closing of window, assuming the interior of the vehicle as insulation. The analysis of each condition shows that these models maintain a pleasant environment. It is seen that this analysis result on the internal flow analysis according to the opening and closing of vehicle window can be applied by converging with the field of design.