• Title/Summary/Keyword: air temperature

Search Result 10,349, Processing Time 0.032 seconds

Development of Fuzzy Controller for Air Conditioning of Grain Bin (곡물빈용 공기조화장치의 퍼지제어기 개발)

  • 최영수;문대식;정종훈
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.137-143
    • /
    • 2002
  • Temperature and humidity are the most important factors and should be effectively controlled for the cold storage of graius. Fuzzy logic can be easily implemented to the MIMO(Multi-Input Multi-Output) control systems. For the cold storage in grain bin, fuzzy logic was applied to an air conditioning system. The capacities of the grain bin and the air conditioner are 80 tons and 30㎾, respectively. Also, the target values of temperature and relative humidity in outlet duct of the air conditioner were 8$\^{C}$ and 75%, respectively. In order to control temperature and relative humidity of air, a damper in inlet duct was manipulated for temperature control and a heater was used for humidity control. Temperature deviation and change of temperature deviation were used as input parameters for the fuzzy system. Humidity was only considered as a load. The experimental results showed that the controlled temperature of exhausted air was maintained at 8$\pm$2$\^{C}$. Relative humidity of the air was also controlled at the target relative humidity of 50∼80%.

Effect of the Suction Air Temperature on the Performance of a Positive Displacement Air Compressor (흡입공기 온도에 의한 용적형 공기 압축기 성능 변화)

  • Jang, Ji-Seong;Han, Seoung-Hun;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • Pneumatic systems are widely applied in various industry because it have a many advantage(low cost, high safety, etc.). Air compressors supply the working fluid to the pneumatic systems and consume a lot of electrical energy at the manufacturing site. The one of the suggested idea is to reduce the energy consumption by reducing the suction temperature of the air compressor and increasing the discharge flow rate. In this paper, the discharge flow rate and air power of the positive displacement type air compressor is simulated by changing the temperature of suction air and the relationship between the suction air temperature and the performance variation of the air compressor is analyzed. As a result, we know that as the suction temperature of air is lowered, the discharge mass flow-rate is increased, but the specific enthalpy is reduced rather than increased, which means that the power of the discharged air is not greatly increased even if lower the suction air temperature.

The Study on Thermal Characteristic of the Balcony with Natural Ventilation System (자연환기시스템을 부착한 발코니의 열적 특성에 관한 연구)

  • Cho Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2005
  • This paper compared vertical temperature distribution between the existing balcony model without ventilator facilities and the improved balcony model with ventilator facilities using differential equation. As the air inside of balcony is heated by solar radiation this heated air is not exhausted in the existing balcony, remaining stagnant. The air temperature distribution was $26.7{\sim}29.3^{\circ}C$ in balcony without natural ventilator system. This heated air affected the rising air temperature of adjacent spaces such as living room and bedroom in the existing balcony. But, as the heated air inside of the improved balcony model is exhausted through natural ventilator facilities in summer, the air temperature in balcony has fallen. The air temperature distribution in improved balcony was $24.8{\sim}26.7^{\circ}C$ for the inlet air speed of 1 m/s and $24.6{\sim}26.7^{\circ}C$ for the inlet air speed of 3 m/s. The energy consumption of the improved balcony is 2.5 times less than of the existing balcony. The improved balcony with the closed damper makes a roll as the existing balcony in the aspect of the heating effect. When the heated air in the improved balcony is supplied, the air temperature is raised and the ventilation effect in adjacent spaces was improved.

A Study on Air Temperature-reducing Effects by Irrigation Reservoir (도시 내 소규모 관개저수지의 기온 저감효과에 관한 연구 - 수원시 일월저수지를 대상으로 -)

  • Zheng, Hai-Yan;Jin, Wen-Cheng;Lee, Kyoo-Seock;Oh, Sung-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The air temperature-reducing effects by irrigation reservoir in urban area was investigated at Ilwol Pond (IWP). Air temperature and humidity data were observed at 10minute interval from September 1th, 2008 to August 31th, 2009. Air temperature of IWP and Sumsung Apartment (SAT) were analyzed to examine air temperature-reducing effects by IWP in terms of diurnal and seasonal variation. As a result, the average air temperature difference between IWP and SAT was $0.6^{\circ}C$ and the nighttime shows more air temperature-reducing effects. The dominant air temperature-reducing effects by IWP occurred at fall night and summer daytime. However, the air temperature-reducing effects by IWP is lower to that by Arboretum (ARB).

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

Daily Changes in Red-Pepper Leaf Surface Temperature with Air and Soil Surface Temperatures

  • Eom, Ki-Cheol;Lee, Byung-Kook;Kim, Young-Sook;Eom, Ho-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.345-350
    • /
    • 2014
  • This study was conducted to investigate the changes in daily surface temperature of red pepper leaf compared to air and soil surface temperature. The maximum, minimum and average daily temperatures of red pepper leaf were 27.80, 11.40 and $19.01^{\circ}C$, respectively, which were lower by 0.10, 7.60 and $3.86^{\circ}C$ than air temperature, respectively, and lower by 15.00, 0.0 and $4.38^{\circ}C$ than soil surface temperature, respectively. Mean deviations of the difference between measured and estimated temperature by the E&E Model (Eom & Eom, 2013) for the air and surface temperature of red pepper leaf and soil were 0.64, 1.82 and $4.77^{\circ}C$, respectively. The relationships between measured and estimated scaled factor of the air and surface temperature of red pepper leaf and soil were very close to the 1:1 line. Difference between air and surface temperature of red pepper leaf showed a linear decreasing function with the surface temperature of red pepper leaf. Difference between soil surface temperature and air and surface temperature of red pepper leaf linearly increased with the soil surface temperature.

Change in the Plant Temperature of Tomato by Fogging and Airflow in Plastic Greenhouse (포그분사 및 공기유동에 의한 온실재배 토마토의 엽온 변화)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • To investigate the influence of surrounding environment on the plant temperature and examine the effect of plant temperature control by fogging and airflow, plant temperature of tomato, inside and outside air temperature and relative humidity, solar radiation and wind speed were measured and analyzed under various experimental conditions in plastic greenhouse with two-fluid fogging systems and air circulation fans. According to the analysis of plant temperature and the change of inside and outside air temperature in each condition, inside air temperature and plant temperature were significantly higher than outside air temperature in the control and shading condition. However, in the fogging condition, inside air temperature was lower or slightly higher than outside air temperature. It showed that plant temperature could be kept with the temperature similar to or lower than inside air temperature in fogging and airflow condition. To derive the relationship between surrounding environmental factor and plant temperature, we did multiple regression analysis. The optimum regression equation for the temperature difference between plant and air included solar radiation, wind speed and vapor pressure deficit and RMS error was $0.8^{\circ}C$. To investigate whether the fogging and airflow contribute to reduce high temperature stress of plant, photosynthetic rate of tomato leaf was measured under the experimental conditions. Photosynthetic rate was the highest when using both fogging and airflow, and then fogging, airflow and lastly the control. So, we could assume that fogging and airflow can make better effect of plant temperature control to reduce high temperature stress of plant which can increase photosynthetic rate. It showed that the temperature difference between plant and air was highly affected by surrounding environment. Also, we could estimate plant temperature by measuring the surrounding environment, and use it for environment control to reduce the high temperature stress of plant. In addition, by using fogging and airflow, we can decrease temperature difference between plant and air, increase photosynthetic rate, and make proper environment for plants. We could conclude that both fogging and airflow are effective to reduce the high temperature stress of plant.

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료 분무특성에 관한 실험적 연구)

  • Park, Min-Chul;Oh, Sang-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.42-50
    • /
    • 2001
  • An experimental study has been carried on high-preheated temperature air combustion. Because the flames with high-preheated temperature air combustion were much more stable and homogeneous(both temporally and spatially) as compared to the room-temperature combustion air. The global flame feature showed range of flame colors (yellow, blue, blurish-green) over the range of conditions. Low level of NOx along with low level of CO have been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on preheated temperature and oxygen concentration air.

  • PDF

A PID Control of Supply Duct Outlet Air Temperature in Personal Environment Module

  • Park, Young-Chil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.82-90
    • /
    • 2003
  • The work presented here is a design and an implementation of PID control system to regulate a supply duct outlet air temperature in PEM (Personal Environment Module). In PEM, the air is heated to the required temperature while it flows through the supply duct without any mixing chamber. This makes the control of air temperature in PEM difficult. A simulation is done first to understand the relationship between a temperature distribution in working area, flow rate and the outlet air temperature of PEM. Then a linear dynamic model of heating process in PEM is derived. P, PD and PID type control systems, to provide the rapid response without overshoot and saturation in heater command voltage, are designed using a linear model obtained. Experimentally obtained data shows that the control system satisfies the design criteria and works properly in controlling the supply duct outlet air temperature.

Effect of Ambient Air Temperature on the Pattern of Clothing Ventilation through Openings (환경 온도가 개구부를 통한 의복의 환기 양상에 미치는 영향)

  • 추미선
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.793-801
    • /
    • 2002
  • The effects of ambient air temperature on the clothing ventilation were investigated numerically by a finite difference method. Numerical analysis using a 2-dimensional model comprising the air space between the skin and the clothing was conducted under the assumption that the clothing ventilation occurred only through the openings not through the fabric. The larger the temperature difference between the skin and the surroundings, the more apparent the thermal boundary layer As the ambient air temperature decreased, the air flow and the rate of the return of oxygen concentration to the atmosphere level in the clothing increased. Convection was dominant under low ambient air temperature, whereas conduction was dominant under high ambient air temperature. The ventilation rate was faster in the clothing microenvironment of the body part than that of the arm part.

  • PDF