• 제목/요약/키워드: air stream

검색결과 494건 처리시간 0.025초

제트 유동장에서의 마일드 연소 및 오염물질 배출특성에 관한 전산해석 연구 (Computational Study of the MILD Combustion and Pollutant Emission Characteristics in Jet Flow Field)

  • 김유정;송금미;오창보
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.60-65
    • /
    • 2012
  • The MILD combustion and pollutant emission characteristics were investigated computationally. The temperature of supplying air-stream and mixing rate (${\Omega}$) of exhaust gas in the air-stream were adjusted to investigate the effects of those parameters on the MILD combustion in jet flow field. The emission indices for NO (EINO) and CO (EICO) were introduced to quantify the amount of those species emitted from the combustion. The high-temperature region disappeared gradually as the mixing rate increased for fixed air-stream temperature. The EINO increased as the air-stream temperature became higher for fixed mixing rate, and the EINO decreased dramatically with increasing the mixing rate for each air-stream temperature condition. The EICO also decreased with increasing the mixing rate and it was nearly independent of air-stream temperature except for near ${\Omega}$ = 0.7. It was found that the CO supplied in the air-stream can be destroyed in the MILD combustion over the certain mixing rate.

산지계류의 계절적 수온변동 특성 및 영향인자 분석 (Seasonal Variations of Stream Water Temperature and its Affecting Factors on Mountain Areas)

  • 남수연;최형태;임홍근
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.308-315
    • /
    • 2019
  • The objective of this study was to investigate mountain stream water and air temperatures, area, latitude, altitude, and forest coverage in headwater catchments located in Kangwon-do, Mid-eastern Korea from 2015 to 2017. Daily mean value of mountain stream water temperature was approximately $6^{\circ}C$ lower than the daily mean value of air temperature on the monitoring sites during the observation period. Monthly mean value of mountain stream water temperature increased with increasing monthly mean value of air temperature from May to August during the observation period. Seasonal variations of mountain stream water temperature were dependent on air temperature rising and falling periods. Correlation analysis was conducted on mountain stream water temperature to investigate its relationship with air temperature, area, latitude, altitude, and forest coverage of air temperature rising and falling periods. The correlation analysis showed that there exists a relationship (Correlation coefficient: -0.581 ~ 0.825; p<0.05), particularly the air temperature showed highest correlation with mountain stream water temperature. Regression equations could be developed due to contribution of air temperature to affect mountain stream water temperature (Correlation coefficient: 0.742 and 0.825; p<0.01). Therefore, a method using various parameters based on air temperature rising and falling periods, could be recommended for predicting mountain stream water temperature.

흡입공기분류를 가로지르는 가솔린 분무의 유동 특성 연구 (A Study on the Flow Characteristics of Gasoline Spray across the Suction Air Stream)

  • 김원태;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.63-74
    • /
    • 1999
  • When a fuel was injected with opening the intake valve of a port fuel injection engine, the spray atomization and flow characteristics in the intake port have a strong influence on the mixture formation of a combustion chamber. Thus , this study was to clarify the spray flow characteristics of the air-assist gasoline spray with fine dropkets across the suction air stream in model intake port. For the simulated opening intake valve in port, suction air stream was varied to 10m/s ∼30m/s. And fuel pressur ewas fixed to 300kPa, but air assist pressure was varied to 0∼25kPa for a vairable spray conditions. Spray flow trajectory was investigated by means of laser sheet visualization and the measurements of droplet sizes and velocities were made by PDPA system. Measured droplets within the spray flow field were subdivided into five size groups and then, the flow characteristics of droplet size groups were investigated to the spray across a suction air stream.

  • PDF

2차원 2단 혼합층에서의 초음속 연소에 관한 수치해석 (Numerical Investigation of Supersonic Combustion on Two-dimensional Double Shear Layer)

  • 김동민;백승욱
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.285-288
    • /
    • 2008
  • 본 연구는 연료(수소)층과 산화제(공기)층의 사이에 불활성기체(질소)또는 연료(수소)를 평행분사하는 수치해석을 다루고 있다. 수치해석을 위해서 완전 보존되는 비정상 2차 시간정확도법과 2차 TVD방법이 유한 체적법과 사용되었다. 결과는 3가지 종류로 구성되어있다. 첫째는 연료와 산화제의 단일 혼합층이고, 둘째는 연료와 산화제의 사이에 불활성기체를 분사하는 방식이며, 세 번째는 연료와 산화제의 사이에 연료를 분사하는 방식이다. 전체 유동층의 수직두께는 4cm이며 삽입된 중간층의 두께는 1,2,4mm의 세가지 경우에 대하여 계산하였다.

  • PDF

비행기 꼬리날개 주위의 기류에 관한 시뮬레이션 해석 (Simulation Analysis on Air Stream Around the Tail Wing of Airplane)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.23-27
    • /
    • 2011
  • This study analyzes about the variation of pressure and stream velocity according to the movement of tail wing. The pressure at the front part of airplane becomes lower than at the rear part and the stream velocity has decreased by being bumped against the wing of airplane. The pressure at the front part of rudder becomes higher than at its rear part according to the movement of rudder among the tail wings of airplane. The more stream velocity becomes decreased, the more rudder spreads out. As the tail wing of airplane folds, the pressure at its front part becomes higher. And the pressure at its rear part becomes lower than at its front part. The more tail wing of airplane folds, the more stream velocity becomes decreased.

이온화식 연기감지기의 기류응답특성 연구 (A Study on Response Characteristics of ionization Smoke Detector Influenced by Air Stream)

  • 이복영;정길순;이병곤
    • 한국화재소방학회논문지
    • /
    • 제17권2호
    • /
    • pp.6-9
    • /
    • 2003
  • 공조설비에 의한 실내기류 유동특성은 정상해석에 의해 설치되는 화재감지기의 예상 응답특성과 다른 기류 유동특성을 나타내어 기류변화에 따른 이온화식 연기감지기의 응답특성지연을 규명, 성능위주의 화재감지설비 설계를 위한 기반기술 연구를 수행하였다. 실험은 일정한 연기농도를 가진 기류의 풍속을 변화시켜 이온화식 연기감지기의 기류응답특성을 규명하였다. 실험결과 이온화식 연기감지기의 응답특성은 기류속도와 반비례적인 관계가 있으며 기류속도가 60 cm/s 이상인 경우 응답특성이 예민하게 나타났다. 또한, 석유화학제품의 연소에 의한 연기에 비해 종이류의 훈소화재에 예민한 응답특성을 보이는 것으로 나타났다.

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

환경인자를 이용한 산지계류의 계절별 수온변화 예측 (Estimated Headwater Stream Temperature Using Environmental Factors with Seasonal Variations in a Forested Catchment)

  • 남수연;장수진;김석우;이윤태;전근우
    • 한국환경생태학회지
    • /
    • 제34권1호
    • /
    • pp.55-62
    • /
    • 2020
  • 이 연구는 강원대학교 학술림 내의 산지계류를 대상으로 2년간(2017~2018)의 현지 모니터링에 기초하여 수온과 강우, 유량 및 기온 등 환경인자간의 관계를 분석하고, 계절별 산지계류의 수온변화 예측기법에 대하여 검토하였다. 동절기를 제외한 봄, 여름 및 가을철로 구분하여 단계적 다중선형회귀분석을 실시하였으며, 계절별 산지계류의 수온변화에 미치는 환경인자의 영향을 분석하였다. 그 결과, 산지계류의 일평균 수온은 봄철 6.9~17.7℃로 기온과 유의적 관계를 나타내었고, 여름철 12.2~26.3℃로 기온, 유량과 유의적 관계를 나타냈으며, 가을철 3.6~19.3℃로 기온 및 유량과 유의적 관계를 나타내는 등 계절별로 산지계류의 수온에 미치는 영향인자는 다르게 나타났다. 다중선형회귀식은 봄철 (0.553×기온)+(0.086×유량)+4.145(R2=0.505; p<0.01), 여름철 (0.756×기온)+(-0.072×유량)+2.670(R2=0.510; p<0.01), 가을철 (0.738×기온)+(0.028×강우)+2.660(R2=0.844; p<0.01)이었다. 도출된 모든 회귀식의 결정계수(R2)는 기온만으로 예측한 경우보다 높게 나타났고, 봄철에서 가을철로 갈수록 증가하였다. 향후 정밀도 높은 산지계류의 수온변화 예측을 위해서는 지속적인 현지 모니터링과 함께 시·공간적 데이터의 확보가 중요하다고 판단된다.

대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구 (An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube)

  • 황승식
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.

공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향- (A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation -)

  • 방창훈;추홍록;유갑종
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF