• Title/Summary/Keyword: air relative humidity

Search Result 941, Processing Time 0.031 seconds

Influence of Relative Humidity on the Temperature Increase of a Power Converter

  • Xu, Yang;Chen, Hao;Hu, Zhentao;Li, Dong
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.841-848
    • /
    • 2015
  • As a vital part of renewable energy and electrical traction, power converters are supposed to have high reliability and good performance. However, power semiconductors produce considerable heat when the power converter works, which results in high junction temperatures that lower the reliability and performance of the power semiconductors. Many studies show that ambient humidity has a significant effect on power devices, but the influence of high humidity on junction temperatures has yet to be studied. Therefore, this paper presents a thermal model for power converters in moist air to obtain the junction temperature increase, which is utilized for the power converter used in a Switched Reluctance Motor System. Simulation results show that the law of converter temperature distribution is independent of the relative humidity in the case of fixed ambient temperature, whereas the temperature in the power converter decreases as the ambient relative humidity increases. These simulation results are validated with the experimental results.

The Effects of Micro-Environmental Factors on the House Dust Mite

  • Jo, Wan-Je;Sohn, Jang Yeul
    • Architectural research
    • /
    • v.9 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • The proliferation of the House Dust Mite(HDM) is affected by temperature, humidity, ventilation, etc. Measuring temperature and humidity was performed at the very location where dust samplings take place and where they live in reality together with temperature and humidity of the ambient of the room. There has been discussion over the key environment factor of HDM survival; absolute humidity or relative humidity. It seems that relative humidity is the more important determinant for the mite's survival through the analysis of previous studies. Temperature, humidity, ventilation rate and Der P1 were measured in 4 flats in London. Mite allergen was detected in every house. Levels of Der P1 varied between <100ng/g and 22,778ng/g. Flats with high relative humidity(>50%) and poor ventilation(<0.5ach) showed higher levels of mite allergen than flats with lower humidity and adequate air change rate. Questionnaire survey was conducted and the result helped to confirm the findings from monitoring of environmental factors and the dust sampling.

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF

The Changes of Meteorological Environment by Urban Development (대규모 도시 재개발에 따른 기상환경변화)

  • Kim, Geun-Hoi;Kim, Yeon-Hee;Koo, Hae-Jung;Kim, Kyu-Rang;Jung, Hyun-Sook
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • Urbanization affects the local thermal environment due to the large scale land use changes. To investigate the weather environment change of large scale urban redevelopment, 9 surface temperature and humidity observations were accomplished at Eunpyeong new town area. The observation period is from March 2007 to February 2010. In the center of development area, the air temperature has increased and relative humidity has decreased, by the changes of the land cover and building construction. In the area where the green zone is maintained, air temperature and relative humidity were not changed significantly. The air temperature and relative humidity for the other development observation stations is decreased and increased, respectively. The relative temperature difference between study area and a neighboring rural location was increased during observation periods. The difference is the highest during winter. The urban-rural minimum temperature difference was increased at development area, which means that urbanization affects increasing of minimum temperature in study area.

A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet (부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.514-519
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF

A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet (부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.562-567
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF

SELECTION OF THE SENSORS FOR THE ENVIRONMENTAL CONTROL SYSTEMS OF PIG-HOUSING IN TEMPERATE ZONE

  • Chang, Dong-Il;Chang, Hong-Hee
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1126-1135
    • /
    • 1996
  • This study was conducted to select the sensors for measuring temperature, relative humidity, and air velocity among the major environmental factors affecting the pig productivity as a part of the study for the optimum production system model development of pig-housing. The study results are summarized as the follows : Two sensors , HMP233L and HANI, were tested for measuring temperature and relative humidity , Test results were analyzed by the statistical methods. And the sensor, HMP233L was selected as a proper sensor for temperature sand relative humidity measurement . An air velocity sensor was tested. Test results showed that its accuracy was low and incongruent for the air velocity measurement when it was lower than 4m/s.

  • PDF

A Survey on the Sanitary Condition of Kitchens in School Food-service Programs (일부 학교급식소 조리실의 위생관리에 관한 조사연구)

  • 김종규
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • A survey including an inspection was conducted to assess the sanitary condition of kitchens in the school food-service programs and to prepare background data for improving the safety of school meals. The survey was carried out over a two-month period (September-October, 2001). A self-administered questionnaire recommended by the Korea Ministry of Education & Human Resources Development (MOEHRD) was offered to a random sample of dieticians of twenty-five elementary schools in one region of Korea about food, sanitation, and safety inspection of their kitchens. Air temperature, relative humidity, and airborne microbes in the kitchens were monitored during preparation, cooking, and service. The inspection results showed their sanitary rendition met the level B of the recommendation of the Korea MOEHRD. The range of air temperature of the kitchens was 21.4~22.4$^{\circ}C$. and the range of relative humidity was 62.4~69.6%. The microbiological evaluation of kitchen samples indicated aerobic plate count levels from 22..5 to 26.5 CFU/15 minutes. Although the results of inspection show that the levels of sanitary condition of kitchens in the schools were good, they are not satisfactory for safe food-servile because the temperature and humidity levels are high. This study indicates that the school kitchens should be monitored and strict inspection is necessary. The legal standards for school food-service should include standards for kitchen air temperature, relative humidity, and airborne microbes.

Water management for vapor-fed direct methanol fuel cells (수동급기 직접 메탄올 연료전지의 공기극 물 관리)

  • Chang, Ik-Whang;Ha, Seung-Bum;Cha, Suk-Won;Lee, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.319-322
    • /
    • 2009
  • This paper investigated environmental effects for passive, air-breathing, and vapor-feeding direct methanol fuel cells. In these experiments, experimental parameters are temperature($30^{\circ}C$, $40^{\circ}C$ and relative humidity(25%, 50%, 75%). From these experimental results, the water contents play a key role in terms of optimal ionic conductivity at the cathode catalyst layer. In case of pure methanol feeding, the performance is inversely proportional to the relative humidity. The water generation resulting from methanol crossover maintains ionic conductivity at the cathode. On the contrary, diluted methanol solution (50wt.%) lowers methanol crossover to the cathode. In order to increase ionic conductivity, the relatively high humidity is required to the cathode catalyst layer for the water generation. The relative humidity scales with the performance.

  • PDF

Study of the Moderately Under-Expanded Supersonic Jet of Moist Air (부족팽창된 습공기 초음속 제트에 관한 연구)

  • Baek, Seung-Cheol;Kim, Heuy-Dong;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2121-2126
    • /
    • 2003
  • Supersonic free jets discharging from an orifice or a nozzle have long been research subject with a number of engineering applications and have mainly been investigated using dry air or other gas without any condensation effects. The major characteristics of those supersonic jets are now well known in terms of jet pressure ratio and ratio of specific heats of gas. Recently, the supersonic jets of superheated steam or moist air are being used in many industrial applications, in which case is expected that the condensation effects might alter the fundamental structure of the dry air jet. The present study aims to investigate the supersonic moist air jet and to clarify the condensation effects on the jet structure. An experiment is carried out using an indraft wind tunnel facility. The relative humidity of moist air is controlled at the nozzle supply, and the jet pressure ratio is varied to obtain the moderately under expanded flows at the exit of the nozzle. It is found that the relative humidity of moist air can change the diameter and location of Mach Disk.

  • PDF