• Title/Summary/Keyword: air mass

Search Result 2,623, Processing Time 0.029 seconds

Characteristics of Vertical Profiles of Local Aerosol Mass Concentration According to Air Mass Pathways over the Korean Peninsula During Winter (한반도 겨울철 공기이동경로에 따른 에어로졸 농도의 연직분포 특성)

  • Ko, A-Reum;Kim, Jinwon;Chang, Ki-Ho;Cha, Joo-Wan;Lee, Sang-Min;Ha, Jong-Cheol
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.525-535
    • /
    • 2019
  • Vertical distributions of aerosol mass concentrations over Seoul and Gangneung from January to February 2015 were investigated using aerosol Mie-scattering lidars. Vertical mass concentration of aerosol was calculated from the lidar data using KALION's algorithm and quantitatively compared with ground PM10 concentration to obtain objectivity of data. The backward trajectories calculated using HYSPLIT (version 4) were clustered into 5 traces for Seoul and 6 traces for Gangneung, and the observed aerosol vertical mass distribution was analyzed for individual trajectories. Result from the analysis shows that, aerosol concentrations with in the planetary boundary layer were highest when airflows into the measurement points originated in the Shandong Peninsula or the Inner Mongolia. In addition, the difference of aerosol mass concentrations in the two regions below 1 km was about twice as large as that in the long range transport from the Shandong Peninsula compared to the local emission. This result shows that the air quality over Korea related to particulate matters are affected more by aerosol emissions in the upstream source regions and the associated transboundary transports than local emissions. This study also suggests that the use of local aerosol observations is critical for accurate simulations of aerosol-cloud interactions.

Effects of the Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axial Grooves (그루브형 히트파이프에서 작동유체량이 히트파이프 성능에 미치는 영향)

  • Suh, Jeong-Se;Park, Young-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • An analytical and experimental study of the thermal performance of axial heat pipe with axial groove is conducted to determine the optimal mass of working fluid for the maximum heat transport capacity of heat pipe with axial grooves. Generally, the mass of working fluid has been fully charged by considering only a geometrical shape of axial grooves embedded in a heat pipe. When the heat pipe is operated in a steady state, the meniscus re-cession phenomena of working fluid is occurred in the evaporator region. In this work, the optimal mass of working fluid was obtained from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the mass of working fluid within a heat pipe, and presented for the maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal mass of working fluid were compared with those of the experimental mass of working fluid.

Experimental Study of Reynolds Number Effects on Heat/Mass Transfer and Pressure Drop Characteristics in a Rotating Smooth Duct (매끈한 벽면을 가진 회전덕트 내 레이놀즈 수에 따른 열/물질전달 및 압력강하 특성 연구)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.888-895
    • /
    • 2006
  • The present study has been conducted to investigate the effects of Reynolds number on heat/mass transfer and pressure drop characteristics in a rotating smooth two-pass duct. For stationary cases, the heat/mass transfer and pressure drop Is decreased on turning region of both leading and trailing surfaces as Reynolds number increases. For rotating cases, increment of Reynolds number affects differently the heat/mass transfer and pressure drop on the leading and trailing surfaces. In the first pass, for example, the heat/mass transfer on the leading surface is greatly increased, though the heat/mass transfer on the trailing surface is almost the same. The reason is that effect of the main flow is more dominant than effect of secondary flow. In particular, it gave decrement of the heat/mass transfer and the pressure drop at turning region and upstream region of second pass for both non-rotating and rotating cases.

Performance Test for a Centrifugal Air Compressor (원심형 공기압축기 성능시험)

  • 신유환;안이기;김광호;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1964-1971
    • /
    • 1995
  • In the present study, the performance characteristics of a centrifugal air compressor were investigated experimentally. The PC controlled performance test facility for a centrifugal air compressor driven by an electric motor with a gear box to achieve higher compressor rotating speed was set up in the present study. The performance test for a turbocharger compressor of a diesel engine was conducted, and in a case of 34,800 rpm, pressure ratio 1.18, flow rate 0.09kg/s, compressor efficiency 61% were investigated. Adiabatic power for a tested compressor showed maximum value at mass flow ratio 0.8. The value of mass flow ratio of maximum efficiency was about 0.37, it was independent of compressor rotating speed.

A Study of Frost Formation on Different Hydrophilic Surfaces (다른 친수성능을 가진 두 표면에서의 착상에 관한 연구)

  • 김철환;신종민;하삼철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.519-524
    • /
    • 2002
  • An experimental study has been conducted to investigate the effects of surface energy on frost formation. Test samples with two different surfaces are installed in a wind tunnel and exposed to a humid airflow. Dynamic contact angles (DCA) for these surfaces are $23^{\circ}\;and\;88^{\circ}$, respectively. The thickness and the mass of frost layer are measured and used to calculate the frost density while frost formation is visualized simultaneously with their measurements. Results show that frost density increases as time increases at specific test conditions. The air Reynolds number, the airflow humidity and the cold plate temperature are maintained at 12,000, 0.0042 kg/kg and $-21^{\circ}C$, respectively. The surface with a lower DCA shows a higher frost density during two-hour test, but no differences in the frost density have been found after two hours of frost generation. Empirical correlations for thickness, mass and density are assumed to be the functions of the test time and DCA.

Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid (암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • The power cycle using ammonia-water mixture as a working fluid is a possible way to improve efficiency of the system of low-temperature source. In this work thermodynamic performance of the ammonia-water regenerative Rankine cycle with partial-boiling flow is analyzed for purpose of extracting maximum power from the source. Effects of the system parameters such as mass fraction of ammonia, turbine inlet pressure or ratio of partial-boiling flow on the system are parametrically investigated. Results show that the power output increases with the mass fraction of ammonia but has a maximum value with respect to the turbine inlet pressure, and is able to reach 22 kW per unit mass flow rate of source air at $180^{\circ}C$.

Modeling for Frost Growth on a Cold Plate (냉각 평판에서 서리 성장 모델링)

  • Yang, Dong-Keun;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1546-1551
    • /
    • 2004
  • This paper presents a mathematical model to predict the frost properties and heal and mass transfer within the frost layer formed on a cold plate. The laminar flow equations for the air-side are analyzed. and the empirical correlations of local frost properties are employed in order to predict the frost layer growth. The correlations of local frost density and effective thermal conductivity of frost layer, obtained from various experimental conditions, are derived as functions of various frosting parameters (Reynolds number, frost surface temperature, absolute humidity and temperature of moist air, cooling plate temperature, and frost density). The numerical results are compared with experimental data and the results of various models to validate the present model, and agree well with experimental data within a maximum error of 10%. The heat and mass transfer coefficients obtained from the numerical analyses are presented, as the results, it is found that the model for frost growth using the correlation of heat transfer coefficient without solving air flow have a limitation in its application.

  • PDF

Comparative Analysis of Mechanical Vibrations of an Air-Drop Hammer and a Counterblow Hammer in Forging Process (에어-드롭 해머와 카운터블로 해머 프레스 단조공정의 기계진동 비교해석)

  • Kim, S.T.;Choi, Y.H.;Ju, G.J.
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.10-18
    • /
    • 2022
  • Air-drop hammer press and counterblow hammer press are widely used power-drop forging hammersemploying different forging blow mechanisms. It is important and necessary to analyze mechanical vibrations of these two different hammers in their forging processes in order to develop high performance forging hammers. In this study, these two forging hammers were mathematically modelled as mass-spring-damper systems. For these two different types of forging hammers, the forging efficiency and mechanical vibrations due to hammer forging blow were theoretically analyzed and compared. The force transmitted to the ground was also determined and compared. Especially, effects of mass ratio and restitution coefficient on forging efficiency were investigated.

Vibration characteristics between levitation air-gap and switching system girders (상전도 흡인식 자기부상열차 분기기 주행시의 부상공극변동과 분기기 거더의 진동 특성)

  • Shin, Hyeon-Jae;Lee, Jong-Min;Choi, Jang-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.824-829
    • /
    • 2011
  • EMS-type Maglev vehicle maintains constant levitation air-gap between electromagnet and guideway by using gap sensor. The other words, when Maglev vehicles levitating over the guideway, mass of the vehicle effects through 1st (electromagnetic air-gap control) and 2nd (air-spring) suspension to grider. Resonace between electromagnetic suspension and grider could be occurred, which causes instability and poor ridecomfort. This paper is to test the dymanic interaction between levitation air-gap and switching system grider that has less mass and high natural frequencies than other type of general girders.

  • PDF

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF