• 제목/요약/키워드: air freezer

검색결과 41건 처리시간 0.024초

반죽의 냉동과 저장 조건에 따른 빵의 품질 특성 (Quality Characteristics of Wheat Flour Breads with the Doughs Frozen at the Different Freezing and Storage Conditions)

  • 고봉경
    • 한국식품과학회지
    • /
    • 제34권3호
    • /
    • pp.413-418
    • /
    • 2002
  • 제빵에 이용 할 반죽을 발효하거나 발효하지 않은 상태로 다섯 가지의 다른 냉동 및 저장 환경에서 냉동하고 일주일간 저장하여 해동 한 후 제조된 빵의 품질을 비교하였다. 냉동속도가 빠르더라도 발효한 후 냉동된 반죽은 빵의 부피가 감소하였으며 이러한 문제점은 침지식 냉동 방식에서도 해결되지 않았다. $-70^{\circ}C$의 초저온 냉동은 $-20^{\circ}C$ 침지식 냉동고에 비하여 냉동 온도가 매우 낮으나, 냉동 속도도 느리고 해동 후 재 발효하여도 빵의 부피가 작아서 효과적인 냉동 방법이 되지 못하였다. 반면 냉동 속도는 느리지만 $-20^{\circ}C$ 공기 송풍식 냉동고가 $-70^{\circ}C$ 공시 송풍식 냉동고보다 냉동에 따른 장해가 적어서 반죽의 발효가 잘되었다. 동일한 온도일 때는 침지식 냉동이 더욱 효과적이었으며 침지식 가운데도 온도가 더 높은 $-10^{\circ}C$ 냉동이 가장 효과적이어서 발효하지 않고 냉동하여 재 발효 할 경우 대조구보다도 오히려 반죽의 발효가 잘되어 빵의 부피가 더 컸다. 따라서 본 연구에 이용한 방법 가운데 $-70^{\circ}C$ 공기 송풍식 냉동고에서 냉동, 저장하는 것이 가장 비효율적이며 침지식 냉동방법들이 냉동 온도가 높더라도 오히려 해동 후 발효 장해가 적어서 효율적이었다. 위의 실험 결과를 종합하였을 때, 냉동 전에 반죽을 발효하지 않고 $-10^{\circ}C$ 침지식 냉동고에서 냉동하여 저장하거나, $-20^{\circ}C$ 침지식 냉동고에서 초기에 냉동을 하고, $-20^{\circ}C$ air freezer에 저장하는 방법이 가장 효과적이었다.

히트펌프 조건의 원형관에서의 착상에 관한 연구 (Frost Formation on a Cylinder under Heat Pump Condition)

  • 윤신혁;조금남;하야세가쿠
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.804-809
    • /
    • 2009
  • The present study measured frost pattern on a cylinder to propose empirical correlation equations for the local and average frost thickness, frost density and frost mass. The key parameters were diameter of the cylinders (7mm, 20mm), cooling surface temperature of the circular tube, absolute humidity of air, air temperature and air velocity. A 50% ethylene glycol aqueous solution was applied as a coolant. The frost thicknesses at both front and rear were larger than those at the other parts, while they were increased as diameter of the cylinder was increased. The local frost thicknesses at high air velocity were more uniform than those at low air velocity. The values predicted by Kim et al. under the freezer condition showed larger by the maximum of $30{\sim}50%$ than the measured data under heat pump condition. The empirical correlations for the local and average frost thickness and frost mass were proposed. The correlation equations for the frost thickness and frost mass under the heat pump condition in the present study might predict more accurate than the other correlation equations. The proposed correlations might be applied for the freezer condition within the maximum 15% deviation from the previous correlations under freezer condition.

  • PDF

가정용 냉장고의 단열 최적화 (Optimization of Heat Insulation System for a Household Refrigerator)

  • 박진구
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.95-102
    • /
    • 2003
  • Optimization for the insulation thickness and external shape of a household refrigerator is peformed in order to minimize thermal load through the insulation wall. The one dimensional conduction heat transfer model is adopted to calculate thermal load. Calculus of variation is employed to optimize the thickness and shape of refrigerator or freezer. The uniform distribution of an insulation thickness and cubed external shape make thermal load minimize. Finally, by using both of the computational and experimental method, the thermal load is minimized for a refrigerator/freezer. It is shown that there exists optimal thickness of insulation walls and external shape for given the external cabinet dimensions and freezer and refrigerator internal volumes, Also, the analytical results are well agreed with the experimental results.

양문 여닫이형 냉장고 냉동실 결빙 최소화를 위한 토출구형상 최적설계 (Optimal Design of Blowing Plates to Minimize the Freezing Phenomena in the Freezer of a Side-by-side Refrigerator)

  • 곽수민;이영환;금종수;김남식;김상배;이연원
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.17-22
    • /
    • 2003
  • As side-by-side refrigerators came into existence, there has been a growing concern about the free%ins-up of the vital equipment in a walk-in freezer. Due to a bad performance, customers are experiencing too much frustration. In order to minimize the freezing phenomena, the numerical simulation has been performed on the characteristics of cold air flow in a side-by-side refrigerator. The flow field has been simulated with a standard $k-\varepsilon$ turbulent model and a SIMPLE algorithm based on the finite volume method. Through the results of the analysis of the pattern of cold air flow, finally the shape of outlet for cold air flow was modified. The present model was compared with the modified model. The latter was better than the former in minimizing the freezing phenomena.

  • PDF

PIV 애니메이션에 의한 가정용 냉장고 냉동실의 냉기 순환 해석 (Analysis on Cold Air Circulation of a Domestic Refrigerator Freezer by PIV Animation)

  • 김진영;양창조;김정환;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.686-691
    • /
    • 2000
  • Animation technique from the PIV database is particularly emphasized to give macroscopic and Quantitative description of complex flow fields. As an example, an experimental study was carried out investigate the fundamental (low characteristics of the freezer with the domestic refrigerator. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. Image intensifier CCD camera to cope with illumination problem is arranged for the accurate PIV measurement of large flow field. As a results, continuous pictures of the spatial distribution of the instantaneous and time-mean velocity distribution are displayed in real-time sense.

  • PDF

가정용 전기냉장고의 냉동사이클 전산해석(I) (Numerical Prediction of the Performance of Refrigeration Cycle in a Domestic Refrigerator/Freezer(I))

  • 한인철;박진구
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.277-288
    • /
    • 1992
  • Numerical simulations are made of the refrigeration cycle in a domestic refrigerator/freezer. The main purpose of the present study is to predict the steady-state cycle performance with various specifications of cycle components and cabinet under the continuous running conditions. The detailed mathematical models are constructed for both the cycle components and cabinet, which are strongly coupled with each other. The simultaneous equations are solved by simple iteration method, and the results obtained are examined to assess the effect of the cycle components and cabinet modification on the system performance.

  • PDF

바이패스유로 멀티사이클을 적용한 냉동시스템의 성능특성에 관한 연구 (Performance Characteristics of a Bypass Two-Circuit Refrigeration System)

  • 김기열;정해원;김용찬
    • 설비공학논문집
    • /
    • 제21권6호
    • /
    • pp.319-325
    • /
    • 2009
  • The purpose of this study is to investigate the performance characteristics of a bypass two-circuit refrigerator. A bench scale refrigeration system was designed and constructed to estimate possible performance improvement of the bypass two-circuit refrigerator. The experiments were conducted in the bench scale refrigeration system by varying capacity of the condenser and refrigerant charge amount with an adoption of a refrigerant storage vessel. The COPs of the bypass two-circuit refrigeration system in the refrigerator and freezer (RF)-mode and freezer(F) only-mode were increased by 10% and 17%, respectively, with increasing the capacity of the condenser. Besides, the COP of the system in the F only-mode was increased by 10% by adopting the refrigerant storage vessel.

착상을 고려한 가정용 냉동/냉장고 증발기의 열전달 성능 (Heat Transfer Performance of Evaporator Used in a Domestic Refrigerator/Freezer Under Frosting Condition)

  • 이장석;이관수
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.62-70
    • /
    • 2005
  • In this study, the air-side heat transfer coefficients of several types of evaporators in the household freezer/refrigerators are investigated. The types considered in this work are: discrete flat plate fin-and-tube type(in-lined tube array), continuous flat plate fin-and-tube type(staggered tube array), and spine fin-and-tube type(in-lined tube array). The heat transfer correlations obtained from this study for each heat exchangers could expect heat transfer coefficients less than $5\%$ of errors. The result indicates that the air-side heat transfer performance of spine fin-and-tube type evaporator shows the highest value under dry conditions, but discrete flat plate fin-and-tube type evaporator shows the highest value among these three evaporators under frosting conditions.

강제대류방식 PCM 축냉장고 개발 (The Development of a PCM Cold Storage Refrigerator using Forced Convection Method)

  • 이상렬;류인근;김진홍;전용호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.517-522
    • /
    • 2005
  • A cold storage refrigerator using phase change material(PCM) has been developed and its performance test results are provided here. The inner temperature of the refrigerator is controlled with forced convection driven by a fan using a DC battery. At the first, to freeze all the PCM of the ambient temperature by a built-in refrigerating machine, it took about 8 and 10 hours respectively at the refrigerator and the freezer mode. Then, without external power supply, the inner temperature of the cold storage refrigerator has been maintained at $-18{\pm}1^{\circ}C$ during 14 hours at the freezer mode and maintained at $3{\pm}^{\circ}C$ during 34 hours at the refrigerator mode. Just after the end of its valid usage as a refrigerator or a freezer, it took about 6 hours to refreeze the PCM for its reuse. During the test, the ambient temperature was kept at $30^{\circ}C$.

  • PDF

활성탄관법을 이용한 공기중 이황화탄소 농도 측정법에 관한 연구 (Evaluation of the Charcoal Tube Sampling Method for Carbon Disulfide in Air)

  • 이나루;백남원
    • 한국산업보건학회지
    • /
    • 제3권1호
    • /
    • pp.22-36
    • /
    • 1993
  • This study was conducted to evaluate the charcoal tube sampling method for carbon disulfide in the air. Breakthrough was investigated according to flow rate, sampling time and air volume. Also the storage stability by storage method and time was investigated. The results are summarized as follows. 1. The samples stored at room temperature($28.2^{\circ}C$), refrigerator($3.8^{\circ}C$) and freezer($-15.6^{\circ}C$) were analyzed every week to five weeks. At one week storage at room temperature, 3.5% of $CS_2$ in the front section of the charcoal tube migrated into the back section and 57.7% at five weeks. The amount of $CS_2$ in the back section of the charcoal increased continuously by storage time. Migration of $CS_2$ was slow at refrigerator, and stopped occur at freezer. Recovery rate $CS_2$ was 52-82% at room temperature and 92-101% at refrigerator, based on the amount at freezer as a reference value. Thus loss was observed at room temperature. 2. When 6-48 L of fresh air were passed through tubes with spiked amounts of 0.379 and 0.759mg sample, the amounts of $CS_2$ in the back section of charcoal were 5.7-132.4 and 0-92% of the amount in the front section, respectively. The total recovery rates of$CS_2$ from 0.379 and 0.759mg spiked sample were 35.7-101.0% and 9l.3-100.1%, respectively. $CS_2$ loss was observed in 0.379mg spiked sample, but not in 0.759mg spiked sample. In the spiked samples, the amount of $CS_2$ in the back section of charcoal was not affected by flow rate when the air volume was controlled. The amount of $CS_2$ in the back section of charcoal increased over sampling time. And the faster the flow rate, the more the migration amount when the sampling time was the same. 3. A known concentration, 10 ppm of $CS_2$, was produced in a 200 L Tedlar bag. When the air volume was 24, 36, 48 L, breakthrough was 5.8, 16.9, 47.4%, respectively. The sampling flow rate of 0.05, 0.1, 0.2 Lpm did not change the breakthrough rate. Breakthrough increased over sampling time. And the faster the flow rate, the more the breakthrough, when the sampling time was the same.

  • PDF