• Title/Summary/Keyword: air foil thrust bearing

Search Result 13, Processing Time 0.018 seconds

Effects of Increasing Ambient Temperatures on the Static Load Performance and Surface Coating of a Gas Foil Thrust Bearing (외기 온도 증가가 가스 포일 스러스트 베어링의 하중지지 성능과 표면 코팅에 미치는 영향)

  • Hyunwoo Cho;Youngwoo Kim;Yongbum Kwon;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.103-110
    • /
    • 2024
  • Gas foil thrust bearings (GFTBs) are oil-free self-acting hydrodynamic bearings that support axial loads with a low friction during airborne operation. They need solid lubricants to reduce dry-friction between the runner and top foil and minimize local wears on their surfaces during start-up and shutdown processes. In this study, we evaluate the lift-off speeds and load capacity performance of a GFTB with Polytetrafluoroethylene (PTFE) surface coating by measuring drag torques during a series of experimental tests at increasing ambient temperatures of 25, 75 and 110℃. An electric heat gun provides hot air to the test GFTB operating in the closed booth to increase the ambient temperature. Test results show that the increasing ambient temperature delays the lift-off speed and decreases the load capacity of the test GFTB. An early developed prediction tool well predicts the measured drag torques at 60 krpm. After all tests, post inspections of the surface coating of the top foil are conducted. Scanning electron microscope (SEM) images imply that abrasive wear and oxidation wear are dominant during the tests at 25℃ and 110℃, respectively. A quantitative energy dispersive spectroscopy (EDS) microanalysis reveals that the weight percentages of carbon, oxygen, and nitrogen decrease, while that of fluorine increases significantly during the highest-temperature tests. The study demonstrates that the increasing ambient temperature noticeably deteriorates the static performances and degrades the surface coating of the test GFTB.

Performance Predictions of Gas Foil Thrust Bearings with Turbulent Flow (난류 유동을 갖는 가스 포일 스러스트 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.300-309
    • /
    • 2019
  • Gas foil thrust bearings (GFTBs) support axial loads in oil-free, high speed rotating machinery using air or gas as a lubricant. Due to the inherent low viscosity of the lubricant, GFTBs often have super-laminar flows in the film region at operating conditions with high Reynolds numbers. This paper develops a mathematical model of a GFTB with turbulent flows and validates the model predictions against those from the literature. The pressure distribution, film thickness distribution, load carrying capacity, and power loss are predicted for both laminar and turbulent flow models and compared with each other. Predictions for an air lubricant show that the GFTB has high Reynolds numbers at the leading edge where the film thickness is large and relatively low Reynolds numbers at the trailing edge. The predicted load capacity and power loss for the turbulent flow model show little difference from those for the laminar flow model even at the highest speed of 100 krpm, because the Reynolds numbers are smaller than the critical Reynolds number. On the other hand, refrigerant (R-134a) lubricant, which has a higher density than air, had significant differences due to high Reynolds numbers in the film region, in particular, near the leading and outer edges. The predicted load capacity and power loss for the turbulent flow model are 2.1 and 2.3 times larger, respectively, than those for the laminar flow model, thus implying that the turbulent flow greatly affects the performance of the GFTB.

Design of Magnetic Bearings for 200 HP Class Turbo Blower (200 마력급 터보 블로워 적용을 위한 자기베어링 설계)

  • Park, Cheol Hoon;Yoon, Tae Gwang;Park, Jun Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.12-18
    • /
    • 2015
  • Recently, the development trend of turbomachinery is high capacity and high efficiency. Most of turbomachinery in the market are adopting ball bearings or air foil bearings. However, ball bearings have a limit for high speed product over $2.0{\times}10^6DN$(product of the inner diameter of the bearing in mm (D) and the maximum speed in rpm (N)). Air foil bearings have a limit for high axial load for high power products over 200~300 HP(horse power). Magnetic bearing is one of the solutions to overcome the limits of high speed and high axial load. Because magnetic bearings have no friction between the rotor and the bearings, they can reduce the load of the motor and make it possible to increase the rotating speed up to $5.0{\times}10^6DN$. Moreover, they can have high axial load capacity, because the axial load capacity of magnetic bearing depends on the capacity of the designed electromagnet. In this study, the radial and thrust magnetic bearings are designed to be applied to the 200 HP class turbo blower, and their performance was evaluated by the experiment. Based on the tests up to 26,400 rpm and 21,000 rpm under the no-load and load condition, respectively, it was verified that the magnetic bearings are stably support the rotor of the turbo blower.