• 제목/요약/키워드: air flow velocity

검색결과 1,345건 처리시간 0.027초

Measurement of suction air amount at reciprocating engine under stationary and transient operation

  • Kubota, Yuzuru;Hayashi, Shigenobu;Kajitani, Shuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1037-1042
    • /
    • 1990
  • The air-fuel ratio of an internal combustion engine must be controlled with accuracy for the improvements of exhaust emission and fuel consumption. Therefore, it is necessary to measure the exact instantaneous amounts of fuel and suction air, so we carried out the experiments for measuring the air flow velocity in a suction pipe of an internal combustion engine using three types of instantaneous air flowmeter. The results obtained can be summarized as follows: (1) The laminar-flow type flowmeter is able to measure both the average and the instantaneous flow rate, but it is necessary to rectify the pulsating air flow in the suction pipe. (2) The a spark-discharge type flow velocity meter is able to measure the instantaneous air velocity, but it is necessary to choose the suitable electrode form and the spark character. (3) The tandem-type hot-wire flow velocity meter indicates the instantaneous flow velocity and its flow direction.

  • PDF

풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석 (A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel)

  • 한석종;이상호;이재규
    • 한국가시화정보학회지
    • /
    • 제16권3호
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.

막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포 (Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation)

  • 강희찬;김무환
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

Dynamic PIV를 이용한 커튼형 에어백 부품림 장치의 유동해석 (Dynamic PIV analysis of High-Speed Flow Ejected from the Inflator Housing of a Curtain-type Airbag)

  • 장영길;김석;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.407-408
    • /
    • 2006
  • Passenger safety is one of the most important considerations in the purchase of an automobile. A curtain-type air bag is increasingly adapted in deluxe cars for protecting passengers from the danger of side clash. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to pump up the air bag-curtain. Although the inflator housing is fundamental in designing a curtain-type air bag system, flow information on the inflator housing is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the airbag inflator housing in the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing was found to have large velocity fluctuations and the maximum velocity was about 700m/s. The velocity of high-speed flow was decreased rapidly and the duration of high-speed flow over 400m/s was maintained only to 30ms. After 100ms, there was no perceptible flow.

  • PDF

미분탄 연소를 위한 공기압 수송에 관한 연구 (Study on Pneumatic Transport for Pulverized coal Combustion)

  • 오창섭;최병선;홍성선;황갑성
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.299-305
    • /
    • 1992
  • Saltation occurs in horizontal flow of solid and gas when the carrier gas velocity is small enough to permit enough to settling of the solid particles within the transport line. So we should examine the pneumatic flow system to lessen the unbured carbon in the power plant. In this paper the saltation velocity was studied on the various solid flow rate in the constant pipe diameter and on the various temperatures of the flow gas. The air velocity in the power plant transport lines was also surveyed in order to compare with the saltation velocity. As the solid flow rate increased in the constant diameter, saltation velocity increased and as the temperater of the flow gas inereased in the transport line, saltation velocity also increased.

  • PDF

수치해석을 이용한 바닥공조 시스템의 공기환경 평가 (Numerical Study on Indoor Air Quality Based on Age of Air for the Underfloor Air Distribution System)

  • 방승기;안혜린;이원근;문기선;김종률;이광호
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.40-46
    • /
    • 2016
  • In order to improve air quality of indoor environment, studies of the underfloor air distribution (UFAD) system for application in buildings are actively in progress based on temperature and air flow distribution. However, although the age of air is the major evaluation parameter, there has been very little study on this parameter for the UFAD system. In this study, we investigated the age of air to reach the air diffuser, which is installed at the bottom of the interior by the UFAD system. Computational fluid dynamics simulations showed no regular pattern to the maximum value of the age of air in accordance with air flow rate and the velocity at air diffuser. These factors can be deduced from air movement by considering that air emitted from air conditioners was rotated according to the bottom shape of the floor, and then, the age of air in the rotation center was increased. The average age of air of internal interior was reduced considerably as the flow velocity at the underfloor air diffuser was increased from 0.5 m/s to 1.0 m/s However, the age of air was not substantially affected with change in the air volume. Moreover, when the flow velocity at the underfloor air diffuser was higher than 1.0 m/s, the age of air showed no significant difference with change in air volume or height of measurement. These results imply that indoor air quality is more substantially influenced by flow velocity than air volume, and the appropriate flow velocity is 1 m/s or more.

사각형 둔각물체 주위의 유동장 특성에 관한 수치적 연구 (Numerical Study on the Isothermal Flow Field abound Rectangular Cross Section Bluff Body)

  • 이정란;이의주
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.35-41
    • /
    • 2012
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to complement the previous experimental results of the bluff body stabilized flames [1]. For both fuel ejection configurations against an oxidizer stream, the flame stability was affected mainly by vortex structure and mixing field near bluff body. FDS(Fire Dynamic Simulator) based on the LES(Large Eddy Simulation) was employed to clarify the isothermal mixing characteristic and wake flow pattern around bluff body. The air used atmosphere and the fuel used methane. The result of counter flow configuration shows that the flow field depends on air velocity but the mixing field is influenced on the fuel velocity. At low fuel velocity the fuel mole fraction is below the flammable limit and hence the mixing is insufficient to react. Therefore, as the result, the flame formed at low fuel velocity is characterized by non-premixed flames. For the flow field of co-flow configuration, flame stability was affected by fuel velocity as well as air velocity. the vortex generated by fuel stream has counter rotating direction against the air stream. Therefore, the momentum ratio between air and fuel stream was important to decide the flame blow out limit, which is result in the characteristic of the partially premixed reacting wake near extinction.

협소 사각유로에서 공기-물 대향류 유동한계 (Air-water Countercurrent Flow Limitation in Narrow Rectangular Channels)

  • 김병주
    • 설비공학논문집
    • /
    • 제19권6호
    • /
    • pp.441-446
    • /
    • 2007
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been peformed. Countercurrent flow limitation (CCFL) was investigated using air and water in 760mm long, 100mm wide, vertical test sections with 1 and 3mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.125 and 0 to 3.5m/s ranges, respectively. As the gap width of rectangular channel increased the CCFL water superficial velocity decreased for the given air superficial velocity. Slight increase of the air superficial velocity resulted in the abrupt decrease of water velocity when $j_g=2{\sim}4m/s$. The critical superficial velocity of air, at which the downward flow of water was no longer allowed, also decreased with the increase of gap width. The experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be partially acceptable. However the quantitative discrepancies were hardly neglected. New correlation of CCFL was developed and showed good agreement with the experimental data.

불균일한 풍속분포에 따른 응축기의 열전달 성능 변화 (Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow)

  • 이원종;정지환
    • 설비공학논문집
    • /
    • 제26권4호
    • /
    • pp.193-198
    • /
    • 2014
  • Heat transfer performance variation of a condenser caused by non-uniform distribution of air flow was investigated using a numerical simulation method. A heat exchanger used for a outdoor unit of a commercial heat pump system and represented by a numerical model was selected. Non-uniform profile of air-velocity was constructed by measuring the air velocity at various locations of the outdoor unit. Simulation was conducted for various refrigerant circuits and air flow conditions. Simulation results show that the heat transfer capacity was reduced depending on the air-flow rate and the refrigerant circuit configuration. It is also shown that the capacity reduction rate is increased as the average air velocity decreases.

바울형 미분기 베인휠에서의 유속 불균일 개선에 관한 연구 (Improvement of Maldistributed Air Velocity in the Vane Wheel of a Bowl Type Pulverizer)

  • 박덕배;허진혁;문승재
    • 플랜트 저널
    • /
    • 제6권2호
    • /
    • pp.62-69
    • /
    • 2010
  • The stability of coal pulverizer in the 800 MW coal-fired plants is vital to maintain their performance. Thus, this study analyzed the uneven abrasion of the deflector and coal spillage due to the air velocity maldistribution in the vane wheel of a bowl-type pulverizer as it is a possible cause for problems of facility using pulverized coal. In addition, air flow in the underbowl of a bowl-type pulverizer was studied to check air velocity maldistribution in the vane wheel using numerical method. In an attempt to correct the maldistribution of air velocity, air flow of the modified duct vane was studied as enlarging the length of the duct vanes installed at the air inlet duct of the pulverizer and increasing the angle of inclination. It was found that modified duct vane make the velocity distribution at the vane wheel uniform. formed by the duct vanes installed at the air inlet duct of the pulverizer and swirling flow is the major factor in making the velocity distribution of vane wheel exit uniform. This can prevent the uneven abrasion of the deflector, which is one of the components inside the pulverizer and coal spillage.

  • PDF