• 제목/요약/키워드: air flow field

검색결과 800건 처리시간 0.02초

An Experimental Study for Noise Reduction of the Cross-Flow Fan of the Room Air-Conditioners

  • Koo, Hyoung-Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.89-100
    • /
    • 2000
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectra of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed, which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared with and without the bounding fence for various flow rates.

  • PDF

가시화 엔진을 이용한 직분식 디젤엔진내의 유동장 측정에 관한 연구 (An Experimental Study on the Measurement of Flow Field in a Direct Diesel Engine Using a Single Cylinder Visualization Engine)

  • 한용택;황규민;이기형
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.129-137
    • /
    • 2006
  • This paper studies the effects of the swirl for the variation of intake port configuration that is key parameters in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on air-fuel mixing, combustion, and emissions. To investigate the effects of the swirl flow, various rpm(250, 500, 750) and two different intake port were used. And to evaluate the swirl motion in the flow field visualization engine, steady state flow test was conducted. Helical port intake port and SCV(Swirl Control Valve) were selected as the design parameters to increase the swirl flow and parametric study was performed. In the case of non-SCV, intake flow rate and non-dimensional swirl ratio were higher than those of SCV for the swirl head type. So, we could strengthen the swirl in the flow field with the swirl head type and don't using SCV. From the results of steady state flow test, non-swirl head type has the most good advantage for intake flow rate, and also the flow rate could be increased by using the SCV slightly. The effects of the type of engine head on intake air flow capability are dominant with respect to the existence of the SCV. We could measure the qualitative grade of swirl by capturing the scattering signal of microballoon from ICCD camera in the visualization diesel engine.

사이클론형 슬러지 공기건조기의 유동해석 (Flow Analysis for the Sludge Pneumatic Dehydrator with Cyclone Type)

  • 김봉환;정대식
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.1-6
    • /
    • 2009
  • Air drying technology was developed as an equipment for reducing of moisture content from wastewater treatment and waterworks sludge cake and reproducing it by reusable matter. Advantage of cyclone type pneumatic dehydrator is simple and excellent drying performance. The air drying equipment was composed to the air ejector which made high-speed fluid field, and cyclone which made circling fluid field. Dewatered cake was crushed at the high-speed zone as first step, and formed with dried powder of sphere shape by the collision between particles at the circling fluid zone. In this study, a CFD analysis has been performed to predict air-sludge particles flow in cyclone and ejector of pneumatic dehydrator. The computational results showed typical Rankine vortex structure which was frequently found in swirling flow phenomena. And the conical type wedge in lower part of a cyclone prevented accumulation of the sludge particles in the cyclone. Therefore, this technology was effective in drying of dehydrated cake of waterworks sludge.

  • PDF

바닥취출 및 흡입시스템 공조방식에서 취출조건 변경시 실내공기환경 평가 (Evaluation of Indoor Air Environment by Changing Diffuser Location and Air Temperature with Under Floor Air Conditioning System)

  • 김세환;박종일
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.397-403
    • /
    • 2005
  • The thermal comfort of occupants is directly related to several environmental factors such as velocity of air flow, turbulence intensity and temperature distribution of indoor air. The purpose of this study is to evaluate the indoor air flow and temperature distribution in office area using under-floor air-conditioning system (UFAC System) based on the results from physical measurements and to perform a Computer Fluid Dynamics (CFD) under the same condition of inlet and outlet as field measurement. The results from the CFD simulation are similar to those from the field measurement. The results show that UFAC system is provide proper indoor condition for occupants.

PIV기법에 의한 엇갈린 관군 배열 내부의 유동장 측정 (Measurement of Flow Field through a Staggered Tube Bundle using Particle Image Velocimetry)

  • 김경천;최득관;박재동
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.595-601
    • /
    • 2001
  • We applied PIV method to obtain instantaneous and ensemble averaged velocity fields from the first row to the fifth row of a staggered tube bundle. The Reynolds number based on the tube diameter and the maximum velocity was set to be 4,000. Remarkably different natures are observed in the developing bundle flow. Such differences are depicted in the mean recirculating bubble length and the vorticity distributions. The jet-like flow seems to be a dominant feature after the second row and usually skew. However, the ensemble averaged fields show symmetric profiles and the flow characteristics between the third and fourth measuring planes are not so different. comparison between the PIV data and the RANS simulation yields severe disagreement in spite of the same Reynolds number. It can be explained that the distinct jet-like unsteady motions are not to be accounted in th steady numerical analysis.

  • PDF

거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구 (PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car)

  • 이진평;김학림;이상준
    • 한국가시화정보학회지
    • /
    • 제7권1호
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

터널 입출구 주위의 유동장과 배기가스 재순환 (Flow Field and Exhaust Gas Recrirculation around a Tunnel Entrance and Exit)

  • 서용권;이창우;최윤환
    • 터널과지하공간
    • /
    • 제6권3호
    • /
    • pp.245-249
    • /
    • 1996
  • In this study, the flow field and the recirculation phenomena are investigated numerically for the model around a tunnel entrance and exit. It turns out that the air entering to the tunnel entrance comes mostly from the upper region of the entrance implying that maintaining the air clear in that region is important for the inside-tunnel ventilation. We also found that the recirculation of the exhaust gas from the exit to the entrance has a maximum effect when the flow velocity at the exit is somewhat lower than that of the entrance.

  • PDF

장방형 공간내 난류유동및 오염물질 거동의 수치해석 (A Numerical Analysis of Turbulent Flow Field and Contamination Particles Movements in Rectangular Chambers)

  • 심우섭;송기천;황태연;신영철
    • 설비공학논문집
    • /
    • 제3권5호
    • /
    • pp.350-364
    • /
    • 1991
  • The movements of small particles distributed uniformly in a steady flow in rectangular chambers having inlets and outlets were simulated numerically. Low Reynolds number turbulent model with a two-equation ($k-{\varepsilon}$) which describes the turbulent characteristics was applied to predict the air flow pattern and particles movements under the condition of the various locations and size of ducts. The calculation results show that the prediction of recirculation zone and stagnation point of flow is important to determine the particles behavior according to the design change. These results will be useful in designing the rectangular chambers for collective protection.

  • PDF

실내수영장의 열, 기류 및 습도환경에 관한 연구 (A Study of Thermal, Air-flow and Humidity Conditions in an Indoor Swimming Pool)

  • 강석윤;이태구;문종선;이재헌
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.683-689
    • /
    • 2003
  • The thermal comfort of an indoor swimming pool is different from that of general indoor space because of the characteristics of large space and the wear conditions of swimmers. Dew condensation by humid air not only makes mold on the floor, wall and roof but also decreases the durability of buildings by penetrating into their structures. In this study, the characteristics of the flow field, the temperature field and the humidity distribution in an indoor swimming pool have been examined by the numerical method to estimate the level of thermal comfort and the generation rate of dew condensation. The results showed that the dew condensation regions were spread widely at the eastern parts of the swimming pool due to the insufficient air flow rate with low velocity and temperature. To prevent the generation of dew condensation in a region, a sufficient warm air flow rate should be supplied to make an air mixing. The values of PMV at horizontal plane of 1.5 m height have the range of -1.0∼1.2, which means the suitable level for swimmers.

횡방향 유속 변화에 따른 고압 가솔린 팬형 인젝터의 분무특성 (Spray Characteristics of High Pressure Fan Spray Injector with Various Crossflow Speed)

  • 최재문;문석수;배충식
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.38-44
    • /
    • 2005
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced from the injector of DIS(Direct Injection Spark Ignition) engine is of paramount importance in DISI engines. Fan-spray injector as well as swirl-spray injector was developed and utilized to the DISI engines. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engineer. The direct Mie scattered images presented the macroscopic view of the liquid spray fields interacted with crossflow. Particle sizes of fuel droplets were measured with phase Doppler anemometer(PDA) system. A faster cross-flow field made SMD larger and $D_{10}$ smaller. The experiments show the interaction of air flow field and the fuel spray field of fan-spray. The results can be utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF