• 제목/요약/키워드: air data sensor

검색결과 302건 처리시간 0.026초

공공데이터와 IoT 센싱 데이터를 활용한 경보방송 방법에 관한 연구 (A study on alarm broadcasting method using public data and IoT sensing data)

  • 류태하;김승천
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.21-27
    • /
    • 2022
  • 사회가 발전하고 복잡해짐에 따라 재난의 종류도 미세먼지, 전염병 등과 같이 새롭고 다양하게 발생하고 있다. 하지만 기존에는 이러한 재난에 대비할 수 있는 정확한 정보를 제공하는 전관방송 시스템이 없었다. 본 논문에서는 공공 데이터와 IoT 센서로부터 수집된 오염된 대기질 데이터를 분석하여 자동으로 경보를 방송하는 전관방송 시스템을 제안한다. 대기질에 따라 경보의 단계가 달라지며, 공공데이터에서 제공하는 정보는 측정소로부터의 거리나 풍향 등 다양한 요인으로 인해 안내 지역과 상당한 차이가 있는 결과를 나타내기도 한다. 이를 보완하기 위해 공공데이터에서 가져온 데이터와 현장 IoT센서에서 얻은 데이터를 비교 분석하여 방송하는 방법을 제안하고자 한다.

가정용 고분자전해질 연료전지 공기공급시스템의 모델 기반 고장 검출 기술 (Model-based Fault Detection Method for the Air Supply System of a Residential PEM Fuel Cell)

  • 원진연;김민진;이원용;최윤영;홍종섭;오환영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.556-566
    • /
    • 2019
  • Recently, as the supply of residential polymer electrolyte membrane fuel cells (PEMFCs) increases, the durability and lifetime of the PEMFC system are becoming important. The related studies have been mainly focused on the durability and lifetime of materials while the research on the durability and maintenance of the system level is insufficient. In this paper, a model-based fault detection method is developed considering an air supply system that is dominant to the system performance and efficiency. A commercial 1 kW residential fuel cell system is built, and experiments are conducted under various operation loads and states (normal, 6 faults). From the experimental data, nominal models and residuals are generated. With the residual pattern obtained from real-time data, the detection and classification of various faults can be possible. The technical importance of this paper is to minimize extra sensor installation by using the empirical model rather than a complex mathematical model, and to decrease the number of models by using the applicable model at three loads. Finally, the model-based fault detection method for the air supply system of a PEMFC is established and is expected to be applicable to other subsystems.

산업용 백금저항온도계의 시정수 측정 (Measurement of the Time Constant of Industrial Platinum Resistance Thermometers)

  • 김용규;김숙향;양인석
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.41-46
    • /
    • 2009
  • We present experimental data on the time response behavior of industrial platinum resistance thermometers (IPRT) to help with the selection of proper sensors in industry and research laboratories. Time constants of IPRTs were measured using a method specified in ASTM standards. Two different sensors of different protecting sheath diameters were tested in air, water and silicon oil at temperatures from $0^{\circ}C$ to $200^{\circ}C$. The time constant was the smallest in water and the highest in air. As the test temperature increased, time constants tended to decrease at all heat conducting media. For different diameters of sheath of IPRT at the same temperature, it was found that the IPRT of larger diameter showed higher time constant in air, but the opposite dependence was observed in water and oil. From the measured results, it was suggested that the sensor diameter and heat conducting medium should be considered if one wants to select proper thermometer to measure the dynamic temperature change in industry and research area.

에너지 절감용 조명 및 공조기기 최적제어 시스템 개발 (Development of Optimal Control System for Lighting and HVAC(Heating, Ventilation, Air Conditioning) Using Energy Saving)

  • 장우성;송영석;조병록;조석환
    • 한국전자통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.1029-1036
    • /
    • 2018
  • 본 논문은 캠퍼스환경에서 에너지 절약을 위해 조명 및 공조기기의 최적제어 시스템 개발에 대한 연구이다. 본 연구를 통해 개발 된 제어 시스템의 경우 모션센서와 영상처리를 통해 출입 인원수 파악과 온/습도에 대한 정보로 조명과 에어컨을 제어한다. 또한 데이터 통합 모니터링과 제어 신호에 따른 명령 수행 기능을 통해 제어한 결과들로 에너지 절약을 가능하도록 하였다.

A Study on the Improvement of Comfortable Living Environment by Using real-time Sensors

  • KIM, Chang-Mo;KIM, Ik-Soo;SHIN, Deok-Young;LEE, Hee-Sun;KWON, Seung-Mi;SHIN, Jin-Ho;SHIN, YongSeung
    • 웰빙융합연구
    • /
    • 제5권4호
    • /
    • pp.19-31
    • /
    • 2022
  • Purpose: This study was conducted to identify indoor air quality in various living spaces using sensors that can measure noise, vibration, fine dust, and odor in real time and to propose optimal indoor air quality maintenance management using Internet of Things(IoT). Research design, data and methodology: Using real-time sensors to monitor physical factors and environmental air pollutants that affect the comfort of the residential environment, Noise, Vibration, Atmospheric Pressure, Blue Light, Formaldehyde, Hydrogen Sulfide, Illumination, Temperature, Ozone, PM10, Aldehyde, Amine, LVOCs and TVOCs were measured. It were measured every 1 seconds from 4 offices and 4 stores on a small scale from November 2018 to January 2019. Results: The difference between illuminance and blue light for each measuring point was found to depend on lighting time, and the ratio of blue light in total illumination was 0.358 ~ 0.393. Formaldehyde and hydrogen sulphide were found to be higher than those that temporarily attract people in an indoor office space that is constantly active, requiring office air ventilation. The noise was found to be 50dB higher than the office WHO recommendation noise level of 35 ~ 40dB. The most important factors for indoor environmental quality were temperature> humidity> illumination> blue light in turn. Conclusions: Various factors that determine the comfort of indoor living space can be measured with real-time sensors. Further, it is judged that the use of IoT can help maintain indoor air quality comfortably.

Discrimination of Motions with Physical Deformation of Muscles and EMG

  • Unkawa, Taksshi;Iida, Takeo
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.109-112
    • /
    • 2000
  • The purpose of the present study is to evaluate the basic upper-limb involved in products manipulation. Upper-limb muscular deformations and electromyography (EMG) measurements are used as indexes for estimated motion: hand opening and closing, wrist extending and flexing, pronation and supination, grasping conditions. Measured values are analyzed by multivariate analysis and a regression equation is obtained for estimating the characteristics of upper-limb performance. Muscular deformation is defined as a change in shape, such as a pressure changes when the hand or wrist moves. hand opening and closing can be discriminated at a higher percentage of accuracy by muscular deformation data than by EMG data. Muscular deformation measurements using air-pack pressure sensors were verified to be effective in motion estimation applications.

  • PDF

주름관에서의 압력강하와 마찰손실 계측에 관한 연구 (The study on the measurement for the pressure drop and friction factor of corrugated metal pipes)

  • 윤영선;강준원;유재석;김현정
    • 한국가시화정보학회지
    • /
    • 제4권2호
    • /
    • pp.76-80
    • /
    • 2006
  • The data for friction factor of the pipe correlated by Reynolds number and relative roughness have been reported well as a Moody chart. However, the results for corrugated shapes have been not investigated sufficiently. In this research, therefore, the pressure drop and friction factor are obtained. Flexible metal tubes with corrugations for the measurement are made of stainless steel plates. The kinds of tubes for the measurement are 5 annular types and helical types. The pressure drop & the velocity of the flow are obtained by micromanometer & digital pressure sensor, supplying dry air at several steps. Then the pressure drop is calculated for each tube, using the obtained data. The result shows that the pressure drop is strongly influenced by the viscous dissipation of kinetic energy due to the circulation of flows, rather than a viscous friction loss. The pressure drop increased consistently as the Reynolds number increases.

  • PDF

Simulation of Remote Sensing Reflectance and Ocean Color Algorithms for High Resolution Ocean Sensor

  • Ahn, Yu-Hwan;Shanmugam, P.;Moon, Jeong-Eon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.103-106
    • /
    • 2003
  • Retrieval of ocean color information from Multispectral Camera (MSC) on KOMPSAT-2 was investigated to study and characterize small-scale biophysical features in the coastal oceans. Prior to the derivation of such information from space-acquired ocean color imageries, the atmospheric effects largely from path and the air-sea interface should be removed from the total signal recorded at the top of the atmosphere (T$_{TOA}$). In this study, the 'path-extraction' is introduced and demonstrated on the TM and SeaWiFS imageries of highly turbid coastal waters of Korea. The algorithms for retrieval of ocean color information were explored from the remote reflectance (R$_{rs}$) in the visible wavebands of MSC. The determination of coefficient (R$^{2}$) for log-transformed data [ N = 500] was 0.90. Similarly, the R$^{2}$ value for log-transformed data [ N = 500] was found to be 0.93.

  • PDF

실외공기측정기 자료를 이용한 도심 기상 예측 기계학습 모형 비교 (Comparison of Machine Learning Techniques in Urban Weather Prediction using Air Quality Sensor Data)

  • 박종찬;박헌진
    • 한국빅데이터학회지
    • /
    • 제6권2호
    • /
    • pp.39-49
    • /
    • 2021
  • 최근 국가 관측망, 기업 공기 측정기 등을 통해 많고 다양한 기상 데이터가 수집되고 있다. 기계학습 기법을 통해 기상 예측하려는 노력이 곳곳에서 이루어지고 있으며, 국내 미세먼지는 농도가 증가해오고 사람들의 관심이 높아 가장 관심있는 예측 대상 중 하나이다. 본 연구에서는 서울시 전역에 설치된 840여 개실외공기측정기 데이터를 사용하여 PM10·PM2.5 예측 모형을 비교하고자 한다. 5분 뒤 미세먼지 농도 예측을 통해 실시간으로 정보를 제공할 수 있으며, 이는 10분·30분·1시간 뒤 예측 모형 개발에 기반이 될 수 있다. 잡음 제거, 결측치 대체 등의 데이터 전처리를 진행하였고, 시·공간 변수를 고려할 수 있는 파생 변수를 생성하였다. 모형의 매개변수는 반응 표면 방법을 통해 선택하였다. XGBoost, 랜덤포레스트, 딥러닝(Multilayer Perceptron)을 예측 모형으로 사용하여, 미세먼지 농도와 예측값의 차이를 확인하고, 모형 간 성능을 비교하고자 한다.

Efficient Kernel Based 3-D Source Localization via Tensor Completion

  • Lu, Shan;Zhang, Jun;Ma, Xianmin;Kan, Changju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.206-221
    • /
    • 2019
  • Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming a major research focus. Due to the complicated air-ground environments in 3-D positioning, many of the traditional localization methods, such as received signal strength (RSS) may have relatively poor accuracy performance. Benefit from prior learning mechanisms, fingerprinting-based localization methods are less sensitive to complex conditions and can provide relatively accurate localization performance. However, fingerprinting-based methods require training data at each grid point for constructing the fingerprint database, the overhead of which is very high, particularly for 3-D localization. Also, some of measured data may be unavailable due to the interference of a complicated environment. In this paper, we propose an efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the spatial correlation of the RSS data and demonstrate the low rank property of the RSS data matrix. Based on this, a new training scheme is proposed that uses tensor completion to recover the missing data of the fingerprint database. Finally, we propose a kernel based learning technique in the matching phase to improve the sensitivity and accuracy in the final source position estimation. Simulation results show that our new method can effectively eliminate the impairment caused by incomplete sensing data to improve the localization performance.