• Title/Summary/Keyword: air circulation

Search Result 543, Processing Time 0.029 seconds

Performance Improvement of Dielectric Barrier Plasma Reactor for Advanced Oxidation Process (고급산화공정용 유전체 장벽 플라즈마 반응기의 성능 개선)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.459-466
    • /
    • 2012
  • In order to improved treatment performance of dielectric barrier discharge (DBD) plasma, plasm + UV process and gas-liquid mixing method has been investigated. This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical). The basic DBD plasma reactor of this study consisted of a plasma reactor (consist of quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode), air and power supply system. Improvement of plasma reactor was done by the combined basic plasma reactor with the UV process, adapt of gas-liquid mixer. The effect of UV power of plasma + UV process (0~10 W), gas-liquid mixing existence and type of mixer, air flow rate (1~6 L/min), range of diffuser pore size (16~$160{\mu}m$), water circulation rate (2.8~9.4 L/min) and UV power of improved plasma + UV process (0~10 W) were evaluated. The experimental results showed that RNO degradation of optimum plasma + UV process was 7.36% higher than that of the basic plasma reactor. It was observed that the RNO decomposition of gas-liquid mixing method was higher than that of the plasma + UV process. Performance for RNO degradation with gas-liquid mixing method lie in: gas-liquid mixing type > pump type > basic reactor. RNO degradation of improved reactor which is adapted gas-liquid mixer of diffuser type showed increase of 17.42% removal efficiency. The optimum air flow rate, range of diffuser pore size and water circulation rate for the RNO degradation at improved reactor system were 4 L/min, 40~$100{\mu}m$ and 6.9 L/min, respectively. Synergistic effect of gas-liquid mixing plasma + UV process was found to be insignificant.

Tropical Night (Nocturnal Thermal High) in the Mountainous Coastal City

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.965-985
    • /
    • 2004
  • The investigation of driving mechanism for the formation of tropical night in the coastal region, defined as persistent high air temperature over than 25$^{\circ}C$ at night was carried out from August 14 through 15, 1995. Convective boundary layer (CBL) of a 1 km depth with big turbulent vertical diffusion coefficients is developed over the ground surface of the inland basin in the west of the mountain and near the top of the mountain, while a depth of thermal internal boundary layer (TIBL) like CBL shrunken by relatively cool sea breeze starting at 100 km off the eastern sea is less than 150 m from the coast along the eastern slope of the mountain. The TIBL extends up to the height of 1500 m parallel to upslope wind combined with valley wind and easterly sea breeze from the sea. As sensible heat flux convergences between the surface and lower atmosphere both at the top of mountain and the inland coast are much greater than on the coastal sea, sensible heat flux should be accumulated inside both the TIBL and the CBL near the mountain top and then, accumulated sensible heat flux under the influence of sea breeze circulation combined with easterly sea breeze from sea to inland and uplifted valley wind from inland to the mountain top returning down toward the eastern coastal sea surface should be transported into the coast, resulting in high air temperatures near the coastal inland. Under nighttime cooling of ground surface after sunset, mountain wind causes the daytime existed westerly wind to be an intensified westerly downslope wind and land breeze further induces it to be strong offshore wind. No sensible heat flux divergence or very small flux divergence occurs in the coast, but the flux divergences are much greater on the top of the mountain and along its eastern slope than on the coastal inland and sea surfaces. Thus, less cooling down of the coastal surface than the mountain surface and sensible heat transfer from warm pool over the coast into the coastal surface produce nocturnal high air temperature on the coastal inland surfaces, which is not much changed from daytime ones, resulting in the persistence of tropical night (nocturnal thermal high) until the early in the morning.

Comparison of the Dehumidification Performance Between LiCl and LiBr in a Liquid Desiccant Dehumidifying Element Having Criss-Cross Sinusoidal Channels (Celdek) (교차 적층된 파형 액체 제습 소자 (Celdek)에서 LiCl과 LiBr 수용액의 제습 성능 비교)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.27-34
    • /
    • 2018
  • Recently, liquid desiccant systems have received attention for the dehumidification of air. LiCl and LiBr are widely used in liquid desiccant systems due to their excellent thermo-physical properties. In this study, dehumidification tests were conducted with Celdek elements using LiCl and LiBr. During the tests, the dry and wet-bulb air temperatures were maintained at $35^{\circ}C$ and $28^{\circ}C$, respectively. The solution temperature was $20^{\circ}C$, the solution concentration was 50%, the solution circulation rate was 50 kg/h, and the frontal air velocity was varied from 2.0 to 4.0 m/s. The results show that the amount of dehumidification increased as the frontal velocity increased. On average, LiCl showed 27% higher dehumidification performance than LiBr, which was probably due to the lower saturation of the absolute humidity of LiCl compared with that of LiBr. On the other hand, LiBr yielded 12% larger pressure drop than LiCl. In general, the Sherwood numbers of LiCl and LiBr were approximately the same, showing that the effect of the desiccant on the Sherwood number was insignificant. Existing correlations highly overpredicted the present Sherwood numbers.

Agricultural Climatology of Cheju Island II. Potential Evapotranspiration Based on Near-Real Time Data Measured by Automated Weather Stations (제주도의 농업기후 분석 II. 무인관측강에 의한 기상실황자료 수집 및 증발산위 계산)

  • 윤진일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.6
    • /
    • pp.504-511
    • /
    • 1990
  • Weather data acquisition and potential evapotranspiration (PET) calculation procedure were investigated to support the agricultural development efforts in the mid-altitude mountainous region of Cheju Island. Automated weather stations (AWS) were installed at two points representing the east and the west of the study area. A personal computer was employed to collect the near-real time weather data from AWS through the public telephone line. Hourly data were available for solar radiation, air and soil temperature, relative humidity, wind speed and direction, and precipitation. Based on the data for the month of June 1989, daily climatic features were comparatively analyzed for the two areas and the Penman equation was used to calculate PET. Air temperature was higher by 1 to 2 degree C in the east due mainly to the higher solar radiation and partly to the Fohn effect caused by the daytime southwesterly blowing over Mt. Halla. Diurnal march of soil temperature lagged by 4 hours behind that of air temperature and the diurnal range for 10cm subsurface soil was 3 degree C. Wind was consistently stronger and a marked sea-land breeze circulation was detected in the west. Calculated PET values were higher in the east by 6% than in the west. Overall values from the east and the west of the mid-altitude mountainous region were higher by 30% than those of the coastal region, which were estimated from the Class A Pan evaporation measured by the Korea Meteorological Service Offices.

  • PDF

A Study on the Area Composition Analysis of the National Designated Isolation Unit Wards(NDIUs) - Focused on the NDIU wards issued in 2016 (국가지정입원격리병상의 시설별 면적구성에 관한 연구 - 2016년 국가지정입원격리병상 확충사업대상을 중심으로)

  • Yoon, Hyung Jin;Kwon, Soon Jung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.23 no.2
    • /
    • pp.73-82
    • /
    • 2017
  • Purpose: Since the facility guidelines for National Designated Isolation Unit wards(NDIUs) had been edited since 2016, all hospital who want to expand or install NDIU should adapt the new guidelines. Instead of providing area requirement, by the way, only essential or optional facility requirements are suggested except patient bedroom in the guidelines. So, as analyze area and area composition of the NDIUs, it could be expected that this study has a role as an area planing reference for not only NDIU but also another airborne infection isolation room. Methods: For the area analysis, 18 sample hospitals are selected among 2016 year applicants. All rooms in NDIUs are grouped as zones whether those are negative air pressurized or not and programed room or not. At the end, area of the zones are summarized and analysed a relationship between area increase and bed number by both correlation analysis and regression analysis. In addition, department usable and gross area per bed, N/G ratio, G/N ratio, and average area ratio of each zone is calculated. Results: First of all, rooms in none negative air pressurized zone of the NDIUs haven't shown a regular installation so that only those in negative air pressurized zone are targeted for the area analysis. Second of all, patient room unit(0.92) and support area(0.79), by correlation analysis, are correlated with total net area. Patient room unit(0.94) and total net area(0.79) are also shown a correlation with bed number. Department usable area($R^2=0.63$, y=36.278x + 102) and patient room unit area($R^2=0.89$, y= 27.993x - 0.8924) has a relationship with bed number by regression analysis. Average N/G is shown as 0.85 and G/N 1.36. Average area ratio of circulation, doffing area, patient room unit, and support area are 25.4%, 9.1%, 50.9%, and 14.6% in order. Implications: This study is a basic research for exploring the NDIUs guidelines to find resonable evidence to develop it for its practical use. Still, it is possibly expected that the guideline is to be developed by post occupancy evaluation in the area of where minimum requirement or facility grade needs to be defined, and by further studies with various perspectives.

A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System (FGR 시스템 동력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-whan;Jung, Kwong-ho;Park, Sung-bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.263-273
    • /
    • 2016
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_x$ emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and $NO_x$ emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

Solar Energy Storage Effectiveness on Double Layered Single Span Plastic Greenhouse (2중 단동비닐하우스의 태양열 축열이용 효과)

  • Lee, Sung-Hyoun;Ryou, Young-Sun;Moon, Jong-Pil;Yun, Nam-Kyu;Kwon, Jin-Kyung;Lee, Su-Jang;Kim, Kyeong-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • This study was carried out in order to reduce the amount of underground water which is used in the double layered single span plastic greenhouse for retaining heat. For this research, two plastic green houses of the double layered single span plastic greenhouse were installed. There was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50 cm in diameter filled with subsurface water. The surplus solar energy in the greenhouse was stored in the water in the PVC duct. Four FCUs (Fan Coil Unit), which has the capacity of 8,000 kcal per hour, were installed in the middle of the house, and a circulation motor in heat storage water tank was operated from 10:30 a.m. to 16:00 p.m. in order to circulate water between the water tank and the FCUs. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of lower than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. To prevent the water freezing, mixing antifreezing liquid in the water or operating FCU continuously was needed. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Considering the amount of water used in the house with water-curtain-heating system is 150~200 ton per day, using the system mentioned in this research showed that reducing the underground water more than 80% in order to maintain the internal temperature as the level of 5 degree celsius at the extreme temperature of minus 5 degrees celsius.

Thermal Environment Analysis for Preserving Ancient Mural Painting in Songsan-ri Tomb No. 6, Gongju, Korea (공주 송산리 6호 벽화고분 보존을 위한 온열환경 분석 연구)

  • Kim, Dae Woon;Jeong, Sun Hye;Lee, Min Young;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.521-534
    • /
    • 2016
  • Ancient tombs are typically comprised of confined rooms, which have different spatial characteristics than the external environment because they are covered by heavy layers of soil. In this study, we examined the thermal energy flow from the outside to inside of Songsan-ri tomb No. 6. External heat flows slowly to the inside because of heavy soil layer, and the presence of several rooms and entrances. For this reason, it takes about two months for the air temperature to travel from the outside to the inside of the tomb. Interestingly, the gradational inflow of thermal energy from outside the tomb leads to delicate horizontal and vertical variations in the wall temperature. These micro-environmental differences occur in the inner tomb every year, so we can expect them to cause condensation with regularity. In addition, we show that the previously installed forced circulation air conditioning system risks fatal damage to the mural wall painting. The results of this research suggest an optimal air conditioning system and optimized space planning to conserve Songsan-ri tomb No. 6 and its mural painting.

Change of Coastal Upwelling Index along the Southeastern Coast of Korea (동해 남부 연안용승지수의 변화)

  • SHIN, CHANG-WOONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • Long-term trends and recent variations of upwelling index (UI), which affects significantly ecosystem in southwestern part of the East Sea, were investigated. The UI was calculated with the NCEP/NCAR reanalysis data from January 1948 to September 2018. The mean UI has positive value that causes upwelling in April to August with a peak in July. The long-term reducing trend of UI was in statistically significant in June and July, and the sum of UI in May, June and July also showed same result. Through the atmospheric pressure analysis around the Korean peninsula, it was found that the trend of the UI was the influence of the pressure change trend in the northwestern region ($35-50^{\circ}N$, $114-129^{\circ}E$) of the southwestern part of the East Sea. Investigating UI in recent 7 years from 2012 to 2018, it was revealed that the UI was bigger than 3 times of standard deviation in July 2013. This was result from the sea level pressure difference became larger in the southwestern part of the East Sea than normal year due to the lowered air pressure in the northeastern region of China and the strengthened high air pressure of western peripheral of the North Pacific High. On the other hand, the UI in July 2018 was negative when the impact of the North Pacific High and the low air pressure in the northeastern China was weak. Due to the decreasing trend of UI and its large year-to-year variation in southwestern part of the East Sea, continuous monitoring is necessary to know the influence of coastal upwelling on the ecosystem.

Biological Pump in the East Sea Estimated by a Box Model (상자 모형으로 추정한 동해의 생물 펌프)

  • Kim, Jae-Yeon;Kang, Dong-Jin;Kim, Eung;Cho, Jin-Hyung;Lee, Chang-Rae;Kim, Kyung-Ryul;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.295-306
    • /
    • 2003
  • Recently efforts are underway to analyze the impacts of anthropogenic $CO_2$ on the global environments and the amount of oceanic uptake increase. The East Sea is now viewed as a miniature ocean because its circulation pattern is similar to the ocean conveyer belt. The biological pump of the East Sea is a vital component to understand the carbon cycle quantitatively. In this paper, the biological pump is estimated utilizing the stoichiometric ratio between carbon and phosphorus. A simple phosphate budget model is constructed based on the seawater and dissolved oxygen box model that can simulate the recent structural change in deep water circulation of the East Sea. A model run from you 1952 to 2040 shows the steadily intensifying biological pump. Currently it exports about 0.016 Pg C yr$^{-1}$ , which corresponds to 35% of the carbon introduced into the seawater by the air-sea exchange. An increased oxygen supply to the central water mass as a result of from the transition in the ventilation system might enhance the remineralization of sinking biogenic particles. This should strengthen the upward nutrient flux into the surface layer. Consequently, the biological sequestration of anthropogenic carbon is expected to increase with time. The estimated biological uptake of the anthropogenic carbon in the East Sea since the Industrial Revolution is estimated as 0.025 Pg C.