• Title/Summary/Keyword: air circulation

Search Result 543, Processing Time 0.026 seconds

Effect of Various Loading Methods on Freshness of Spring Kimchi Cabbage (다양한 적입방식이 봄배추의 선도유지에 미치는 효과)

  • Lee, Young-Joo;Lee, Hye-Ok;Kim, Ji-Young;Kim, Byeong-Sam
    • Journal of the Korean Society of Food Culture
    • /
    • v.32 no.4
    • /
    • pp.303-310
    • /
    • 2017
  • Kimchi cabbage is in demand all year, but there is an unbalance in its supply and demand due to climate reasons, requiring practical methods for extending storage without high cost. Therefore, this study aimed to assess available storage methods. 'Choongwang' Kimchi cabbages cultivated in Pyeongchang, Gangwon-do were on June 14 harvested and packed in plastic boxes. Control group was treated by loading four to five heads. Moisturized paper was applied as a liner inside the box to prevent dehumidification and damage to the cut root parts, and a small loading amount (three heads) was applied for better air circulation. Weight loss rates after 12 weeks of storage were 13.83% in the control group, 12.57% in the first group, and 13.38% in the second group. Trimming loss rates after 9 weeks of storage were 14.96% in the control group, 12.29% in the first group, and 12.55% in the second group. As a result of the sensory test, the control group lost its marketability after 6 weeks of storage, while the second group maintained it until 9 weeks and the first group maintained it until 12 weeks and scored higher than 6 points. Therefore, the tested methods were effective for extending the freshness of Kimchi.

A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump (지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가)

  • Jung, Young-Ju;Jo, Jae-Hun;Kim, Yong-Shik;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1 (PNU CGCM V1.1을 이용한 12개월 앙상블 예측 시스템의 개발)

  • Ahn, Joong-Bae;Lee, Su-Bong;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.455-464
    • /
    • 2012
  • This study investigates a 12 month-lead predictability of PNU Coupled General Circulation Model (CGCM) V1.1 hindcast, for which an oceanic data assimilated initialization is used to generate ocean initial condition. The CGCM, a participant model of APEC Climate Center (APCC) long-lead multi-model ensemble system, has been initialized at each and every month and performed 12-month-lead hindcast for each month during 1980 to 2011. The 12-month-lead hindcast consisted of 2-5 ensembles and this study verified the ensemble averaged hindcast. As for the sea-surface temperature concerns, it remained high level of confidence especially over the tropical Pacific and the mid-latitude central Pacific with slight declining of temporal correlation coefficients (TCC) as lead month increased. The CGCM revealed trustworthy ENSO prediction skills in most of hindcasts, in particular. For atmospheric variables, like air temperature, precipitation, and geopotential height at 500hPa, reliable prediction results have been shown during entire lead time in most of domain, particularly over the equatorial region. Though the TCCs of hindcasted precipitation are lower than other variables, a skillful precipitation forecasts is also shown over highly variable regions such as ITCZ. This study also revealed that there are seasonal and regional dependencies on predictability for each variable and lead.

Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame (불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화)

  • Ahn, Taekook;Lee, Wonnam;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

Topology Optimization of Muffler Hole using Genetic Algorithm (유전자 알고리즘을 이용한 머플러 구멍 위상최적설계)

  • Wang, Semyung;Dikec, Altay;Hwang, Insoo;Kwon, Byoungha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1205-1205
    • /
    • 2003
  • Rotary compressors are one of the most important parts of air-conditioners in the industry This device usually has noise problems during the circulation process of the refrigerant and muffler is used for the noise reduction. The acoustic performance of the muffler depends on its shape and its hole locations on the upper surface. Therefore finding the optimum location of the muffler holes is a topic of increasing importance in the compressor industry. In this research the optimization of the muffler hole locations and the importance of the resonator cavity on the lower surface of the muffler in acoustic point of view is studied. At first, the topology optimization for the 2 hole muffler is performed based on a model without resonator cavity by using genetic algorithm. The 2 hole muffler's acoustic analysis and experiment results are matching, however, the optimized model's results are not. By adding the resonator cavity and also by changing the cavity shape, the acoustic analysis and experiment result comparison is Performed for different cavity shapes. The topology optimization of the revised model with cavity is carried out for noise reduction. Finally, the optimized design is produced and tested for validation.

  • PDF

A Development of the Guideline for the Heating Water Quality in Apartment Houses with District Heating System (공동주택 지역난방 수질기준 설정에 관한 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Woo, Dal-Sik;Oh, June;Ahn, Chang-Koo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.493-498
    • /
    • 2008
  • Particles or deposit formed by corrosion of the pipe material bring about bad influences on the heating systems with inconvenience, energy loss and so on. In order to obtain the non-corrosive environments, the circulation hot water should properly be treated in several ways to satisfy one or more conditions of the followings: suitable pH-level, low hardness, low oxygen content, low conductivity, low level of chlorides and sulphur compounds and low level of solid particles. This experimental study was carried out to develope the new guidelines on the optimal water quality and directions for water quality management in heating systems. As results, it was recommended that the heating water be maintained pH-level not less than 8, hardness contents as $CaCO_3$ no more than 50 mg/L, turbidity no more than 10 NTU and T-Fe contents 1 mg/L below.

  • PDF

An Experimental Study on Heat Transfer Characteristics in the LHSS for Cool Thermal Air Conditioning (저온공조용 잠열 축열조의 열전달 특성에 관한 실험적 연구)

  • Seo, I.H.;Koh, J.Y.;Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.11-19
    • /
    • 2000
  • In this study, the basic data which were required for development of LHSS(latent heat storage system) were experimentally obtained. Experiments were carried out under the following conditions. The initial temperatures of P.C.M. which were used by parameter is $5^{\circ}C,\;9^{\circ}C$ and $14^{\circ}C$. The conditions of working fluid are $-6^{\circ}C,\;-4^{\circ}C$, and $65{\ell}$/min.. The pure water of which the freezing point is $0^{\circ}C$ was filled in the system, and the Ethylene glycol(brine) was circulated through the 10 vertical tubes as a secondary fluid in order to cool the P.C.M. down. The inlet temperature of the secondary fluid and the initial temperature of the water were varied to investigate the effects of the important design parameters. The phenomenons of temperature conversion of P.C.M. were appeared for the conductive heat transfer and free convective heat transfer by buoyancy force in this storage unit system. In order to find the effective water circulation path, we obtained P.CM. temperature distributions of 5 parts in the storage tank during freezing process.

  • PDF

Importance of Construction Sequence in Numerical Modeling for Underground Structure

  • Park, Yang-Hoo;Cho, Kook-Hwan
    • International Journal of Railway
    • /
    • v.9 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • When excavation under existing structure is planned for a new construction project, the underpinning method is one of the most applicable construction methods. This study introduces a new modified underpinning method which is applied to construct a new subway line in Seoul Metropolitan. The new subway line was designed to pass underneath the existing subway line. Existing subway line carries about 2 million passengers daily, which is 33% of total passengers using subway in Seoul, and is the only circulation line in Seoul. Subway trains are passing 540 times through this section in a day. By applying a new underpinning method, the subway box structure of line is exposed 54m in the air supported by bearing piles. The proposed method was carefully monitored using heavy instrumentation system during construction. This study proposed and verified the application of the modified underpinning method, which can reduce construction period by 1.5 times and the construction cost by 1.2 times comparing with conventional method. The importance of considering construction sequence is investigated and verified by analyzed data non-considering construction sequence. The unexpected heaving which can bring up a dangerous situation for train running stability were measured, so this study shows that the upward movement has to be analyzed in designing process. As the use of underground space increases, the proposed method can be a good example of underground development.

On the Thermal Low-pressure Onset using Analytical Model around Daegu in Summer (해석학적모델을 이용한 하계 대구지방의 열적저기압 형성에 관한 연구)

  • 김해동;정우식
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1133-1140
    • /
    • 2002
  • The growth and extent of the local pressure field at any point is of primary importance as it supplies the driving force for the local wind circulation which causes a medium-range transport of air pollutants. The local pressure field is produced by the variation of temperature in the lower layers of the atmosphere, and is called the thermal wave. The thermal wave is influenced by the difference in the diurnal variations between two regions with different surface condition, for example land and sea. This difference produces the land- and sea-breeze phenomenon, and brings corresponding variations in the form of the thermal wave. Daytime temperature over the inland area (Daegu) was higher than that of the coastal area (Busan). The temperature difference reached about 5~6$^{\circ}C$ in the late afternoon(30-31 May 1999). The low pressure system of Daegu was most fully developed at the time. In this study, we investigated the possibility of thermal low onset around Daegu in summer with an analytical model. The topography effect was neglected in the model. We could predict a thermal low-pressure of about 3.4hPa at Daegu with wide flat land surface, when the inland area is about 6K warmer than the coastal area temperature. The pressure decrease is somewhat less than the observed value(4~5 hPa).

Design of ALIP with Flowrate of 40 I/min for the Removal of Residual Heat (잔열 제거용 40 I/min급 환단면 선형유도전자펌프의 설계)

  • Kim, H.R.;Nam, H.Y.;Kim, Y.G.;Choi, B.H.;Kim, J.M.;Hwang, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.13-15
    • /
    • 1998
  • EM(Electro Magnetic) pump is used for the purpose of transporting liquid sodium coolant with electrical conductivity in the LMR(Liquid Metal Reactor). In the present study. pilot EM pump has been designed by using of equivalent circuit method which is commonly employed to analyze linear induction machines for the test of removal of residual heat. The length and diameter of the pump have fixed values of 840 mm and 101.6 mm each by taking account of geometrical size of circulation loop for the installation of EM pump. Flowrate versus developing pressure is related from Laithwaite's standard design formula and the characteristic analyses of developing force and efficiency are carried out according to change of input frequency. From the characteristic curve, input frequency of 13 Hz is determined as the design frequency. On the other hand, The annular air gap size of 6.05 mm is selected not to bring about too much hydraulic loss. Resultantly design analysis makes pump have the electrical input of 604 VA and the hydrodynamical capacity of 1.3 bars and 40 l/min.

  • PDF