• Title/Summary/Keyword: air change rate

Search Result 766, Processing Time 0.028 seconds

Study on Exhaust Air Heat Transfer Characteristics of Heat Exchange System for White Smoke Reduction (백연 저감을 위한 열교환 시스템의 배기 열전달 특성에 관한 연구)

  • Wang, Zhen-Huan;Chun, Chong-Keun;Kwon, Young-Chul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.739-744
    • /
    • 2018
  • In this study, effects of reducing white smoke at a heat exchange system for white smoke reduction were studied in the winter season. For this purpose, the heat transfer processes on the exhaust air were investigated by Solidworks. Five wave heat exchangers of air-to-air and air-to-water type were applied for the exhaust air heat recovery. The analytical condition of the exhaust air was fixed and the computational analysis was performed according to the change of SA(supply air) inlet velocities. In order to evaluate the performance of the heat exchange system for white smoke reduction, W(water)/SA recovered capacities and the temperature/absolute humidity reduction rate were calculated. As SA inlet velocity increased, the exit temperature and absolute humidity of the mixing zone were reduced by up to about $40^{\circ}C$ and 0.12kg/kg respectively. Also, W/SA recovered capacities increased linearly up to about 35%.

A Study on the Measurement Method of Leakage Flow-rate for Pneumatic Cylinder (공압실린더의 누설유량 계측방법에 관한 연구)

  • Jang J.S.;Ji S.W.;Jeong J.H.;Kang B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2006
  • In this study, a measurement method of leakage flow-rate for pneumatic driving apparatus is proposed. The existing measurement methods of leakage flow-rate of air need disassemble the test component. Therefore, there is no effective method to measure the leakage flow-rate while operating pneumatic driving apparatus. In this study, the leakage flow-rate is measure from the pressure change in an isothermal chamber that can realize isothermal conditions by stuffing steel wool into it. Therefore, wide range of flow-rate could be measured only from the pressure response and the leakage flow-rate can be measured during operating pneumatic driving apparatus. The effectiveness of the proposed method is proved by experimental results.

  • PDF

A study on the disinfection performance of indoor microorganism using energy consumption analysis for indoor bio-safety (건물 재실자의 미생물 안전을 위한 면역건물 기술의 에너지 사용 연구)

  • Choi, Sang-Gon
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.111-118
    • /
    • 2009
  • In this study the real situation of apartment house in seoul is reproduced with multi-zone modeling program CONTAM2.4. This model include disinfection system which is consist of dilution, filtration, UVGI(ultra violet germicidal irradiation). It's energy consumption was also analyzed through the linked model of CONTAM and TRNSYS according to the combination of components. The comparison of total energy consumption through energy analysis revealed that adjusting the air change rate of the UVGI air sterilizer to maintain the same indoor microbe removal capability was more advantageous in terms of energy consumption.

A Study on the Air System for Space Heating (공기식 집열시스템에 의한 실내 난방 연구)

  • Chun, Won-Gee;Lim, Sang-Hoon;Jeon, Myung-Seok;Yoon, Jong-Ho
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 1992
  • The present study has carried out thermal performance evaluation of air systems for space heating in Daejeon by the f-chart method. The various effects with the change in air flow rate, number of glazings, storage capacity of pebble bed, and coating materials of absorber plate are analyzed with regard to the effectiveness of air systems for space heating. A comparison is also made with liquid systems under the same operating conditions.

  • PDF

Reduction of the Prominent Peak of Tone Noise in Air Conditioning Units (공조기기에서 발생하는 장한 피크의 톤 소음 저감을 위한 연구)

  • Park, Jeong-Il;Kang, Jeong-Hoon;Joo, Jae-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.946-950
    • /
    • 2006
  • This paper proposed the ways for reduction of the prominent peak of the tone noise in air conditioning units. In order to find out the sources of the tone noise, the resonant frequencies and modes of the fans were investigated. Also, the effects of the ambient temperatures and material properties of the fans on the tone noise were studied. From the experiments, it was shown that the tone noise was greatly influenced by the torsional resonance of the fan and motor system and commutation frequency. In other words, the torsional resonance of the fan and motor system has not to be close to the commutation frequency (torque ripple frequency) which creates a rate of change in the angular acceleration in order to reduce the tone noise in air conditioning units.

  • PDF

Injector Control Logic for a Liquid Phase LPG Injection Engine (액상 LPG 분사 엔진의 인젝터 제어 로직)

  • 조성우;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.15-21
    • /
    • 2003
  • The liquid phase LPG injection engine is a new technology to make good use of LPG as a clean energy. However, it is difficult to precisely control air/fuel ratio in the system because of variation of fuel composition, change of temperature and flash boiling injection mechanism. This study newly suggests an injector control logic for liquid phase LPG injection systems. This logic compensates a number of effects such as variations of density, stoichiometric air/fuel ratio, injection delay time, injection pressure, release pressure which is formed by flash boiling of fuel at nozzle exit. This logic can precisely control air/fuel ratio with only two parameters of intake air flow rate and injection pressure without considering fuel composition, fuel temperature.

Measurement of R-134a Leakage from Vehicle Equipped Mobile Air Conditioning(MAC) System (실차를 이용한 자동차 에어컨 냉매 누출량 평가)

  • Kim, Ji Young;Seo, Chungyoul;Lee, Sangeun;Kim, Jeongsoo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • CFC-12 used in mobile air conditioning(MAC) system has been replaced by R-134a, a type of HFC refrigerant, from 1991 to 1994. R-134a has since been widely used as a refrigerant of a mobile air conditioner. However, it is one of the six main green house gases listed in Kyoto Protocol, which makes it imperative to regulate its emission and develop alternative refrigerants. In this study, the concentration of leaked R-134a was measured using VT(Variable Temperature) shed and Running loss test shed to analyze the level of air conditioner refrigerant leaked in a vehicle. According to the analysis of the concentration of R-134a leaked from a vehicle parked, annual leakage amount of R-134a was in the range of 6.46~13.28 g/yr. The figure was similar with the leakage from the mobile air conditioning system currently used. In a study using the same vehicle model, a vehicle equipped with dual evaporation system had a higher leakage rate of refrigerant than a vehicle with a single evaporation system. It appears that the added fittings and joints of the dual evaporator system led to higher leakage rate. Besides, the analysis of the change in R-134a concentration under various car speed found that more refrigerant leaked under high speed(100km/hr) and but the volume of the wind did not affect to the variation of refrigerant leakage.

Long-term Simulation and Uncertainty Quantification of Water Temperature in Soyanggang Reservoir due to Climate Change (기후변화에 따른 소양호의 수온 장기 모의 및 불확실성 정량화)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong;Kim, Yongda;Ohn, Ilsang;Lee, Seoro
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.14-28
    • /
    • 2020
  • Future climate change may affect the hydro-thermal and biogeochemical characteristics of dam reservoirs, the most important water resources in Korea. Thus, scientific projection of the impact of climate change on the reservoir environment, factoring uncertainties, is crucial for sustainable water use. The purpose of this study was to predict the future water temperature and stratification structure of the Soyanggang Reservoir in response to a total of 42 scenarios, combining two climate scenarios, seven GCM models, one surface runoff model, and three wind scenarios of hydrodynamic model, and to quantify the uncertainty of each modeling step and scenario. Although there are differences depending on the scenarios, the annual reservoir water temperature tended to rise steadily. In the RCP 4.5 and 8.5 scenarios, the upper water temperature is expected to rise by 0.029 ℃ (±0.012)/year and 0.048 ℃ (±0.014)/year, respectively. These rise rates are correspond to 88.1 % and 85.7 % of the air temperature rise rate. Meanwhile, the lower water temperature is expected to rise by 0.016 ℃ (±0.009)/year and 0.027 ℃ (±0.010)/year, respectively, which is approximately 48.6 % and 46.3 % of the air temperature rise rate. Additionally, as the water temperatures rises, the stratification strength of the reservoir is expected to be stronger, and the number of days when the temperature difference between the upper and lower layers exceeds 5 ℃ increases in the future. As a result of uncertainty quantification, the uncertainty of the GCM models showed the highest contribution with 55.8 %, followed by 30.8 % RCP scenario, and 12.8 % W2 model.

A Study on the Phenomena of Dust Removal by the Layout Changes in the Turbulent Type Clean Room (난류형 클린룸내의 Layout 변화에 따른 분진제거 특성에 관한 연구)

  • Kim, Yeon-Hui
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.41
    • /
    • pp.80-87
    • /
    • 2007
  • The purpose of this paper is to investigate the removal efficiency of fine dusts as the configuration condition of machinery and equipments in Clean Room and to analyze the flowing behaviors of fine dusts as the layout of Clean Room. The layout of the Clean Room was classified into side layout type, 2 center line type and center concentration type layout, and the flow rates used in this research were 0.22m/s, 0.44m/s and0.80m/s. Dust removal efficiency as layout change was decreased 37% for side layout type, 31% for 2 centerline type and 20% for center concentration type layout at the flow rate of 0.22m/s, compared with the state without machinery and equipments in Clean Room. The efficiency was decreased 42% for side layout type,22% for 2 center line type and 8% for center concentration type layout at the flow rate of 0.44m/s, and decreased 20% for side layout type, 18% for 2 center line type and 10% for center concentration type layout at the flow rate of 0.80m/s. According to the result of dust removal behavior, $0.3\mum$, $1\mum$and $3\mum$dust except for $5\mum$showed the higher change of the behavior in side layout type than in center concentration type layout due to the change of air flow. It was confirmed that removal behavior depends on the layout of machinery and equipments as the dust size decreases.

  • PDF

A Study on the Characteristics of the Liquid-gas Ejector (Liguid-gas Ejector의 구동성능 특성에 관한 연구)

  • Park, Gi-Tae;Jin, Zhen-Hua;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1047-1052
    • /
    • 2008
  • The aim of this paper is that studies on the characteristics of the liquid-gas ejector. Could get data about various model using numerical analysis. Compare and analyze result that get by an experiment and numerical analysis. And studied Characteristics of the ejector. In this paper, Numerical analysis model is gotten divided according to each Throat ratio as three types. Each throat ratio is 0, 4 and 7.5. According to the result that analyze basic model, pressure became lower causing the volume flow rate increase. In CFD studies, Fixed volume flow rate by these result and analyzed ejector performance. As a result, there was no change of pressure to Throat's Enterance, and pressure became low while pass the throat. Since, pressure recovered while passing diffuser. The outer flow velocity did not change greatly to change of volume flow rate. This research expects that is utilized to data for performance elevation hereafter.

  • PDF