• Title/Summary/Keyword: air change rate

Search Result 766, Processing Time 0.032 seconds

A Study on the Heat Rejection to Coolant in a Gasoline Engine (가솔린 엔진에서의 냉각수로의 전열량에 대한 연구)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF

An Analysis of the Prediction Accuracy of HVAC Fan Energy Consumption According to Artificial Neural Network Variables (인공신경망 변수에 따른 HVAC 에너지 소비량 예측 정확도 평가 - 송풍기를 중심으로-)

  • Kim, Jee-Heon;Seong, Nam-Chul;Choi, Won-Chang;Choi, Ki-Bong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.73-79
    • /
    • 2018
  • In this study, for the prediction of energy consumption in the ventilator, one of the components of the air conditioning system, the predicted results were analyzed and accurate by the change in the number of neurons and inputs. The input variables of the prediction model for the energy volume of the fan were the supply air flow rate, the exhaust air flow rate, and the output value was the energy consumption of the fan. A predictive model has been developed to study with the Levenbarg-Marquardt algorithm through 8760 sets of one-minute resolution. Comparison of actual energy use and forecast results showed a margin of error of less than 1% in all cases and utilization time of less than 3% with very high predictability. MBE was distributed with a learning period of 1.7% to 2.95% and a service period of 2.26% to 4.48% respectively, and the distribution rate of ${\pm}10%$ indicated by ASHRAE Guidelines 14 was high.8.

Data Acquisition and Control of Food Dehydration Process with Microcomputer System (마이크로 컴퓨터 계측(計測)및 제어(制御) 시스템을 활용(活用)한 식품건조중(食品乾燥中) 자료(資料)의 수집(收集)과 제어(制御))

  • Choi, Boo-Dol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.200-205
    • /
    • 1987
  • A microcomputer-based on-line monitoring and controlling system was built and applied to the dehycration operation. Drying conditions-drying temperatures and air velocities-were successfully controlled by the control deveices incorporated on/off realy and thyristor, and with the high language program. Drying variables-temperature in drier and weight loss of radish slice were accurately measured and acquisited. The computer-based drying system effectively saved the man power required to measure and record data during the drying period and also made possible to conduct the process undisturbed for long period. The drying rate curves of radish at various drying conditions were obtained from automatic data analyzing program. And also the computer programmed control made possible to investigate the effect of air velocity change during the drying period. The dynamic change of air velocity of from one to another level could be performed and affected markedly the drying rate at first stages of drying, but no significant effect were found in falling rate period.

  • PDF

Experimental Study of Cooling Performance Comparison of a 18650 Li-ion Unit Battery Module (Air Cooling vs. PCM-based Cooling) (18650 리튬-이온 단일 배터리 모듈의 냉각 성능 비교에 관한 실험적 연구(공기 냉각과 PCM 기반 냉각))

  • BAEK, SEOUNGSU;YU, SIWON;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.212-218
    • /
    • 2018
  • Li-ion battery system is regarded as one of the most potent power sources for electrified power-trains. For the Li-ion battery system to be widely adopted in automotive applications, the performance, safety, and cycle life issues need to be properly addressed. These issues are closely related to the thermal management of battery system. Especially, the effective cooling module design is the core part for the novel battery thermal management system development. In this paper, an experimental approach was carried out as a basic part of comprehensive battery thermal management research. The main goal of this paper is to present a comparison of two cooling systems (air cooling and phase change material (PCM) based cooling) of the unit 18650 battery module. The temperature rise with different battery discharge rate (c-rate) was mainly investigated and analyzed for two types of battery cooling systems. It is expected that this study can properly contribute to providing basic insights into the design of robust battery thermal management system for vehicular applications.

Simulation and Health Risk Evaluation of Indoor Air Quality Changes by Ventilation System in New Apartment (신축아파트 환기방식에 따른 실내공기질 변화와 이에 대한 시뮬레이션 및 건강 위해성 평가)

  • Bao, Wei;Jung, Jaeyoun;Jeong, Insoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.38-45
    • /
    • 2021
  • In this study, air quality conditions were identified and analyzed in real time, at the same time, living habits and ventilation methods were maintained in the daily life of residents, and thus, this present study focuses on the lifestyles of residents. Previous studies showed a difference from this study, focusing on the study on the effects of changes in indoor air quality on human health according to the indoor air quality process test standards of the Ministry of Environment. Formaldehyde concentrations exceeded all ventilation standards, but satisfied the organic standards of the Ministry of Environment when ventilation devices and air purifiers were activated. As such, it was investigated that a large amount of formaldehyde emission in the condo is initially ventilated, but a certain concentration is maintained. The change in PM2.5 concentration according to the ventilation method showed a clear difference. As a result of simulating indoor air flow during natural ventilation, the effects of wind speed and wind direction affect the flow rate of indoor air, and indoor polluted air is stagnant even in the presence of wind and is not completely discharged. When the risk assessment results are averaged on the day of measurement, the trends of change between adults and children are almost equivalent, but the results address that children are more sensitive to risk than adults.

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

A Study on Application of Distributor for Duct Design at House Ventilation System (주택용 환기시스템의 덕트설계를 위한 분배기 적용성 검토)

  • Yee, Jurng-Jae;Choi, Seok-Yong;Kim, Seok-Keun;Kim, Kwang-Hyun;Lee, Young-Woo;Kim, Hwan-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.770-775
    • /
    • 2007
  • Although these days application of heat recovery ventilation and improved kitchen ventilation system came into wide use in mixed-use residential buildings and exclusive residences, there are not enough ventilation systems except the local ventilation of kitchens and rest rooms. It is very important part to regulate and distribute correct air flow rate for controlling air change rate. The purpose of this study is to investigate the application of distributor at house ventilation system by comparing a duct system with out distributor and with distributor. The results of this study are as follows. (1) When using distributor though the size of duct diameter is reduced rapidly, the pressure loss doesn't rise largely. The pressure loss without distributor is 4.08 mmAq, the pressure loss with distributor 4.10 mmAq. (2) To use distributor can reduce materials of duct and secure enough ceiling space by reducing duct diameter. (3) Diameters and air flow paths of distributor on the design stage are important part for accurate air flow rate.

Characteristics of allergic pollens and the recent increase of sensitization rate to weed pollen in childhood in Korea (알레르기 화분의 특성과 최근 소아에서 잡초류 화분의 감작률 증가)

  • Oh, Jae-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.4
    • /
    • pp.355-361
    • /
    • 2008
  • Pollen is very important causing factor for allergy such as allergic rhinitis, allergic conjunctivitis, and asthma, and pollen allergy has a remarkable clinical impact all over Korea. The main pollination period covers about half the year, from spring to autumn, and the distribution of airborne pollen taxa of allergological interest is related to pollen season dynamics. Korean academy of pediatric allergy and respiratory diseases (KAPARD) has evaluated the pollen characteristics and nationwide pollen count for over 10 years since 1997. Airborne particles carrying allergens were collected daily from nationwide 8 stations (Seoul, Guri, Cheongju, Daegu, Kwangju, Busan, Kangneung, and Jeju) by using 7 days-Burkard sampler (Burkard Manufacturing Co Ltd, Hertfordshire, UK) in South Korea (July 1, 1997-June 30, 2007). They were counted and recorded along with the meteorological factors daily. Tree pollen is a major airborne allergen in spring, grass is most common in summer, and weed pollen is major pollen in autumn in Korea. There has two peak seasons for pollen allergy, as summer and autumn. There is some evidence suggesting that the prevalence of allergic diseases in Korea has been on the increase in the past decade. However, recent findings of the phase I and II studies of the international Study of Asthma and Allergies in Childhood (ISAAC) study showed the absence of increases or little changes in prevalence of asthma symptoms and diagnosis rates in Korea, whereas the prevalence of allergic rhinitis and atopic dermatitis were increased. We reported the evidence that sensitization rate to weed pollen has been increased yearly since 1997 in childhood. Climate change and air pollution must be the major causing factors for the increase of pollen counts and sensitization rate to pollen. Climate change makes the plants earlier pollination and persisting pollination longer. In conclusion, data on pollen count and structure in the last few years, the pathogenetic role of pollen and the interaction between pollen and air pollutants with climate change gave new insights into the mechanism of respiratory allergic diseases in Korea.

Analysis of Trends and Rate of Change in Domestic and Foreign Passenger Traffic (국내외 여객수송수단의 동향과 변동률 분석)

  • Soo-ho Choi;Jeong-il Choi
    • Industry Promotion Research
    • /
    • v.8 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • The purpose of this study is to look for the trends and rates of change of major passenger modes such as railway, subway, domestic shipping, domestic airline, international shipping and international airline. The data used were selected from the KOSIS, "Domestic Statistics, Statistics by Subject, Transportation and Logistics". The analysis period was 22 years from 1999 to 2020, and the annual rate of change from the previous year was calculated. In descriptive statistics, international shipping and international airlines showed relatively high volatility, whereas railway and subway showed low volatility. In the rise rate analysis, international air and international shipping dropped significantly from 539% and 368% in 2019 to 85% and 20% in 2020 due to Corona. International airline and international shipping fell significantly in 2020, but we expect them to rise again as the shock of Corona disappears in the future. Therefore, it seems that we need a project to prepare for this. International air and international shipping are expected to continue their upward trend as international trade picks up again and international travel regains its momentum.

An Experimental Investigation of Thermodynamic Performance of R-22 Alternative Blends

  • Kim, Chang-Nyeon;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.36-44
    • /
    • 1998
  • R-410a and R-407c which have the best potential among R-22 alternatives were tested as drop-in refrigerants against a set of R-22 baseline tests. The performance evaluations were carried out in a psychometric calorimeter test facility using the residential spilt type air conditioner under the ARI rating conditions. Except the lubricant and hand-operated expansion valve, the other parts of the air conditioner were the same with the commercial system. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly charged into the current refrigeration system because its vapor pressure and other thermochemical properties are similar to those of R-22. However, it is required to change the volume flow rate of compressor in order to achieve the volumetric capacity of R-22. This results from its relatively small VCR and capacity. Meanwhile, R-410a has vapor pressure values too high to be substituted for the current system and this resulted relatively low COP of R-410a compared to that of R-22.

  • PDF