• Title/Summary/Keyword: agricultural tractor

Search Result 460, Processing Time 0.027 seconds

Stress and fatigue analysis of major components under dynamic loads for a four-row tractor-mounted radish collector

  • Khine Myat Swe;Md Nasim Reza;Milon Chowdhury;Mohammod Ali;Sumaiya Islam;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.269-284
    • /
    • 2022
  • The development of radish collectors has the potential to increase radish yields while decreasing the time and dependence on human labor in a variety of field activities. Stress and fatigue analyses are essential to ensure the optimal design and machine life of any agricultural machinery. The objectives of this research were to analyze the stress and fatigue of major components of a tractor-mounted radish collector under dynamic load conditions in an effort to increase the design dependability and dimensions of the materials. An experiment was conducted to measure the shaft torque of stem-cutting and transferring conveyor motors using rotary torque sensors at different tractor ground speeds with and without a load. The Smith-Watson-Topper mean stress equation and the rain-flow counting technique were utilized to determine the required shear stress with the distribution of the fatigue life cycle. The severity of the operation was assessed using Miner's theory. All running conditions produced more than 107 of high cycle fatigue strength. Furthermore, the highest severity levels for motor shafts used for stem cutting and transferring and for transportation joints and cutting blades were 2.20, 4.24, 2.07, and 1.07, and 1.97, 3.81, 1.73, and 1.07, respectively, with and without a load condition, except for 5.24 for a winch motor shaft under a load. The stress and fatigue analysis presented in this study can aid in the selection of the most appropriate design parameters and material sizes for the successful construction of a tractor-mounted radish collector, which is currently under development.

Autonomous Tractor for Tillage Operation Using Machine Vision and Fuzzy Logic Control (기계시각과 퍼지 제어를 이용한 경운작업 트랙터의 자율주행)

  • 조성인;최낙진;강인성
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2000
  • Autonomous farm operation needs to be developed for safety, labor shortage problem, health etc. In this research, an autonomous tractor for tillage was investigated using machine vision and a fuzzy logic controller(FLC). Tractor heading and offset were determined by image processing and a geomagnetic sensor. The FLC took the tractor heading and offset as inputs and generated the steering angle for tractor guidance as output. A color CCD camera was used fro the image processing . The heading and offset were obtained using Hough transform of the G-value color images. 15 fuzzy rules were used for inferencing the tractor steering angle. The tractor was tested in the file and it was proved that the tillage operation could be done autonomously within 20 cm deviation with the machine vision and the FLC.

  • PDF

Technological Trends of Intelligent Agricultural Machinery (지능형 농기계 기술 동향)

  • Hwanseon Kim;Soyun Gong;Joongyong Rhee;Jong-Guk Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.80-91
    • /
    • 2023
  • The purpose of this study is to suggest the direction for the development of intelligent agricultural machinery technology in the Republic of Korea. For this purpose, intelligent technology of agricultural machinery was divided into autonomous agricultural machinery and tractor-implement intelligent communication technology. Then, a survey and analysis of a previous study of the Republic of Korea and foreign countries were conducted. GNSS-based autonomous driving technology is still widely used worldwide, and recently, as research on camera and LiDAR-based autonomous driving is actively progressing, autonomous driving technology is becoming more advanced. ISOBUS-based technology is being developed worldwide for intelligent control of tractor-attached implements, and major global agricultural machinery manufacturers are actively applying it to their products. However, although some ISOBUS technologies are being researched in the Republic of Korea, there are no cases of application on agricultural machinery yet. Therefore, to be globally competitive in the agricultural machinery manufacturing industry, there is an urgent need to advance autonomous driving technology and commercialize agricultural machinery using ISOBUS technology.

Torque Assist Strategy for Hybrid Agricultural Tractor with Consideration of Field Operations (농작업을 고려한 농업용 하이브리드 트랙터의 토크 지원 전략 개발)

  • Choi, Sangchun;Song, Bongsob;Kim, Yongjoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.593-600
    • /
    • 2014
  • This paper proposes a torque assist strategy for operating a hybrid agricultural tractor in the field. In general, different field operations such as baling and rotary tillage require different patterns and amounts of torque. Thus, a large agricultural tractor is used to improve the farming efficiency. Therefore, this research has the goal of developing a hybrid tractor that uses a small electric motor to provide additional torque for specific field operations. To achieve this objective, a rule-based torque assist strategy is proposed and validated for a simulation model in the Autonomie framework, which is a commercial simulation tool. Finally, the work efficiencies and fuel consumptions of a conventional tractor and the hybrid tractor with the proposed torque assist strategy are compared using simulations.

Development of an Autonomous Tractor System Using Remote Information Processing (원격 정보처리를 이용한 자율주행 트랙터 시스템의 개발)

  • 조도연;조성인
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.301-310
    • /
    • 2000
  • An autonomous tractor system was developed and its performance was evaluated. The system consisted of a tractor system of and a remote control station. The tractor and the remote control station communicated each other via wireless modems. The tractor had a DGPS(differential global positioning system), sensors, a controller and a modem. The DGPS collected position data and the tractor status was estimated. The information of tractor status and sensors was transferred to the remote control station. Then, the control station determined the control data such as steering angles using a fuzzy controller. The fuzzy controller used the information from the DGPS, sensors, and GIS(geographic information system) data. The control data were obtained by remote signal processing at the control station The control data for autonomous operation were transferred to the tractor controller. The performances of an autonomous tractor were evaluated for various speeds, different initial positions and different initial headings. About 1.3 seconds of time lag was occurred in transferring the tractor status data and the control data. Compensation the time lag, about 27cm deviation was observed at the speed of 0.5m/s and 37cm at the speed of 1m/s. Error caused mainly by the time lag and it would be reduced by developing a full-duplex radio module for controlling the remote tractor.

  • PDF

Analysis of Power Requirement of Agricultural Tractor by Major Field Operation (농업용 트랙터의 주요 농작업 소요동력 분석)

  • Kim, Yong-Joo;Chung, Sun-Ok;Park, Seung-Jae;Choi, Chang-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.79-88
    • /
    • 2011
  • The purpose of this study was to analyze power requirement of an agricultural tractor by major field operations. First a survey was conducted to obtain annual usage ratio of agricultural tractor by field operation. Plowing, rotary tillage, and loader operations were selected as major field operations of agricultural tractor. Second, a power measurement system was constructed with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. Third, the major field operations were experimented under fields with different soil conditions following planned operation paths. Power requirement was analyzed during the total operation period consisted of actual operation period (plowing, rotary tillage, and loader operations) and period before and after the actual operation (3-point hitch operating, forward and reverse driving, braking, and steering). Power requirement of tractor major components such as driving axle part, PTO part, main hydraulic part, and auxiliary hydraulic part were measured and calculated to determine usage ratio of agricultural tractor power. Results of averaged power requirement for actual field operation and total operation were 23.1 and 17.5 kW, 24.6 and 19.1 kW, and 14.9 and 8.9 kW, respectively, for plowing, rotary tillage, and loader operations. The results showed that rotary tillage required the greatest power among the operations. Averaged power requirement of driving axles, PTO axle, main hydraulic part, and auxiliary part during the actual field operation were 8.1, 7.8, 3.4, and 1.5 kW, respectively, and the total requirement power was about 70 % (20.8 kW) of the rated power. Averaged power requirement of driving axles, PTO axle, main hydraulic, and auxiliary hydraulic for the total operation period were 6.5, 6.0, 2.1, 0.9 kW, respectively, and total requirement power was about 52 % (15.5 kW) of the rated power. Driving axles required the greatest amount of power among the components.

Modeling of Fuel Consumption Rate for Agricultural Tractors (농업용 트랙터의 연료 소비량 예측 모델)

  • Kim, Soo-Chul;Kim, Kyeong-Uk;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • A mathematical model was developed to predict the fuel consumption rate consumed by agricultural tractors under arbitrary loaded conditions. The model utilizes the measured data on the fuel consumptions at the full load and at the rated engine speed with partial loads, which can easily be obtained from the official OECD tractor test reports. It was found from the analysis of the measured fuel consumption data that the fuel consumptions at two different speeds does not change with power. The model was developed based on this fact and validated with the measured data of the 159 tractor test reports. The fuel consumptions predicted by the model were compared with those measured under the partially loaded conditions specified in the official OECD tractor test code II. The percent errors of the predicted fuel consumptions were in a range from 0.36 to 2.86% which assured that the developed fuel consumption model can be used practically to predict the fuel consumptions at any speed and power combinations. It was also shown that the developed model predicts the fuel consumption rate better than the Grisso's model.

Measurement Uncertainty calculation for improving test reliability of Agricultural tractor ROPS Test (농업용트랙터 ROPS 시험의 신뢰성 향상을 위한 측정불확도 추정)

  • Ryu Gap Lim;Young Sun Kang;Taek Jin Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • The agricultural tractor ROPS test method according to OECD code 4 is a test to assess whether the driver's safety area can be secured when a tractor overturns, and reliability should be ensured. In this study, a model formula and procedure for calculating measurement uncertainty expressing reliability in the field of agricultural machinery testing were established according to the ISO/IEC Guide 98-3:2008. The characteristics of the ROPS test device were assessed and repeated tests were performed, and the were used as factors to calculate the measurement uncertainty. As a result of repeated tests, the accuracy was higher than 1.9 % in all load directions; thus, they were, applied to calculate the type A standard uncertainty. The final expanded uncertainty was calculated within the range of less than ± 7.76 kN of force and ± 6.96 mm of deformation in all load directions.

DEVELOPMENT OF A CONTINUOUSLY VARIABLE-SPEED TRANSMISSION FOR AGRICULTURAL TRACTOR

  • Kim, H. J.;Kim, E. H.;K. H. Ryu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.162-169
    • /
    • 2000
  • This study was carried out to develop a continuously variable-speed transmission(CVT) for agricultural tractor. A full-toroidal CVT mechanism with four discs and six rollers was selected as a device for changing speed ratio continuously. In the step of system layout design, the sizes of roller cylinders and end-load cylinder, which were critical factors for controlling the variator, were designed. Also the control pressure range was designed to limit the contact pressure of variator. In order to make the maximum speed of vehicle as 30km/h, the planetary gear and the six pairs of gears were designed. Also the hydraulic clutch, silent chain, hydraulic manifold and electronic controller were designed. After the design, a prototype with CVT controller was developed and tested. The speed of vehicle was changed continuously to the speed set by driver and the settling time was about 0.52 second at the step-response test (reduction ratio of variator 2.0 to 1.0), which was acceptable as a response time for working with tractor.

  • PDF