• Title/Summary/Keyword: agitation conditions

Search Result 277, Processing Time 0.022 seconds

The Effect of Processing Parameters to Manufacture Self-healing Microcapsules for Composite Materials (복합재료의 자가 치료용 캡슐 제작시 공정 변수들의 영향)

  • Yoon, YoungKi;Yoon, HiSeak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.135-141
    • /
    • 2001
  • An experimental study to find the effect of processing parameters for self-healing microcapules is performed. These microcapsules can be applied to accomplish the healing of delamination damage in woven E-glass/epoxy composites. This paper introduces the self-healing concept and presents a method for solving the microcapsule size and shape. Additionally, processing parameters are varied during the formation of microcapsules and these capsules are observed through optical microscope. To obtain thermogravimetric(TG) curve for the manufactured microcapsules, TGA tests are executed. From these results, the best processing conditions for the formation of capsules are found as follows: (1) temperature of solution $ 50^{\circ}C$, (2) potential of hytdrogen(pH) 3.5ppm, and (3) agitation 500~600rpm.

  • PDF

Screening and Identification of an Inulinase Producing Microorganism and Optimal Condition for the Enzyme Production (Inulinase 생산균주의 분리.동정 및 효소 생산최적조건)

  • 임성일;이대희;홍석산;유진영
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.156-160
    • /
    • 2000
  • In an attempt to develop an unique enzyme (inulinase) for fructan utilization. bacterial strains were isolated [yom soil. Stram 96-11 secreting inulinase o[ high activity was tentatively identificated as Arthrobacter protophmmiae/ranwsus. The optimum culture conditions o[the slnin for the production of the inulinase were as follow: inorganic saIl basal medium contained sources fl % (w/v) inulin, 1 % (w/v) tryptone, and 1 % (w/v) $NH_4Cl$]. $35^{\circ}C$, initial pH 7.5. aeration 1 vvm and agitation 200 rpm.

  • PDF

Production of Alkaline Protease by Entrapped Bacillus licheniformis Cells in Repeated Batch Process

  • Mashhadi-Karim, Mohammad;Azin, Mehrdad;Gargari, Seyyed Latif Mousavi
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1250-1256
    • /
    • 2011
  • In this study, Bacillus licheniformis cells were immobilized by entrapment in calcium alginate beads and were used for production of alkaline protease by repeated batch process. In order to increase the stability of the beads, the immobilization procedure was optimized by statistical full factorial method, by which three factors including alginate type, calcium chloride concentration, and agitation speed were studied. Optimization of the enzyme production medium, by the Taguchi method, was also studied. The obtained results showed that optimization of the cell immobilization procedure and medium constituents significantly enhanced the production of alkaline protease. In comparison with the free-cell culture in pre-optimized medium, about 7.3-fold higher productivity was resulted after optimization of the overall procedure. Repeated batch mode of operation, using optimized conditions, resulted in continuous production of the alkaline protease for 13 batches in 19 days.

Optimal Growth Conditions for Carotenoid Pigment Production from marine Microorganism (해양미생물로부터 카로테노이드 색소의 생산을 위한 최적조건)

  • 정영기;김태수;정명주;류병호;주우홍;박정욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1239-1243
    • /
    • 1999
  • The optimal medium composition for the production of carotenoid pigment from Haloarcular sp. EH 1 as a dietary for fishes were 1.0% sucrose, 1.0% yeast extract, 25% sodium chloride, 0.3% sodium citrate, 0.2% potassium chloride, 2.0% magnesium sulphate, 0.002% ferric sulphate(pH 7.0). The incubation temperate, aeration rate and agitation speed were 40oC, 100ml medium/500ml vol. shaking flask, and 180 rpm/min. The carotenoid pigment production was highest after 5 days of incubation with the light.

  • PDF

Studies on the Fermentation of Fish Protein -1. A Model Design of Fermentor- (수산 발효식품 제조에 관한 연구 -1. 어육 발효조의 설계-)

  • Lee, Kang-Ho;Choi, Ho-Yeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.1 no.1
    • /
    • pp.51-62
    • /
    • 1972
  • In Korea, fermented fish has been playing an important role as a preserved and flavor rich food. It is said that the digestion of fish protein is due to both action of intrinsic (autolytic enzymes) and bacterial enzymes in fish. The mass production of fermented fish has been impeded since traditional method of fermentation requires a long duration for a complete digestion. A high concentration of salt and unsanitary condition are also considered disadvantages of the old method. To improve the quality of the product and to develop mechanized process of fermentation, fermentors which have such control device as temperature, pH and agitation control system have been urgently needed. In this study, a model design of a fermentor is studied. The calculation was based on the optimum conditions for enzymatic hydrolysis of fish protein which involve temperature, pH, viscosity and other factors.

  • PDF

Optimization of Lipase Pretreatment Prior to Lipase Immobilization to Prevent Loss of Activity

  • Lee, Dong-Hwan;Kim, Jung-Mo;Shin, Hyun-Yong;Kim, Seung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.650-654
    • /
    • 2007
  • In our previous work, a method of pretreating lipase was developed to prevent loss of its activity during covalent immobilization. In this study, Rhizopus oryzae lipase was pretreated before immobilization and then immobilized on a silica gel surface. The effects of the various materials and conditions used in the pretreatment stage on the activity of immobilized lipase were investigated. Immobilized lipase pretreated with 0.1% of soybean oil had better activity than those pretreated with other materials. The optimal temperature, agitation speed, and pretreating time for lipase pretreatment were determined to be $40^{\circ}C$, 200rpm, and 45min, respectively. The activity of immobilized soybean oil pretreated lipase was 630U/g matrix, which is 20 times higher than that of immobilized non-pretreated lipase. In addition, immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.

Computer Simulation of Quench-Hardening of Alloy Steel for Structural Purposes by the Modified Finite Difference Method (개량차분법에 의한 임의의 형상의 열처리제품의 급냉경화 해석)

  • Kim, K.S.;Song, Y.B.;Hong, C.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.11-16
    • /
    • 1989
  • Understanding and control of thermal history of heat-treated components are very important in heat treating process. A computer program was developed for prediction of thermal history in quenching process with various cooling media and agitation conditions. Computer simulation of heat flow in quenching treatment of spur gear of SCM 22 H was carried out by two and three dimensional finite difference method. Distributions of microstructure and hardness in heat-treated spur gear were predicted by computer simulation, and the results showed a good agreement with the experiments. It was concluded that the

  • PDF

Cultural Characteristics and Pilot Scale Fermentation for the Submerged Mycelial Culture of Lentinus dfodes (표고버섯 균사체의 배양특성 및 Pilot Scale 생산)

  • 이병우;임근형;박기문;손태화;김동욱;손세형
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.609-614
    • /
    • 1993
  • The optimum conditions for the submerged mycelial culture of Lentinus edodes SR-1 were elucidated to be incubation temperature of 25C, initial pH 4.0, agitation of 300 rpm, inoculation of 10.0%(v/v), and aeration of 1.0 v/v/m in TGY medium. The optimum c/n ratio and economic yield coeffcient for the submerged mycelial culture were 13.1:1 and 0.45 respectively. As the plant growth hormones test, SCM medium containing 0.5ppm of 2,4-dicholorophenoxyacetic acid increased mycelial yield in 1.1%, but 6-benzylaminopurine was not effective.

  • PDF

Turbulence Generation by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water Flow

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1203-1210
    • /
    • 2003
  • Emission of ultrasonic vibration to turbulent flow promotes the turbulence generation due to the resonantly oscillating pressure field and thereby induced cavitation. In addition, ultrasonic vibration is well transmitted through water and not dissipated easily so that the micro-bubbles involved in the fluid induce the gaseous cavitation if the bubbles are resonated with the ultrasonic field. In the present study, we found through LDV measurement that the gaseous cavitation induced by ultrasonic vibration to CO$_2$saturated water flow in the rectangular cross-sectioned straight duct enhances turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation. We also found that the fluctuating velocity component induced by emitting the ultrasonic vibration in normal direction of a rectangular channel flow can be redistributed to stream-wise component by the agitation of gaseous cavitation.

Efficient Hydrogenation Catalysts of Ni or Pd on Nanoporous Carbon Workable in an Acidic Condition

  • Lee, Dong-Hwan;Kim, Hong-Gon;Kang, Min;Kim, Ji-Man;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2034-2040
    • /
    • 2007
  • Efficient catalytic systems, where Ni or Pd is introduced in a supporting material of nanoporous carbon, have been developed for a liquid-phase hydrogenation of carboxylic acids and ketones at room temperature. It has been found that the catalysts reliably show high activities and selectivities for the hydrogenation to alcohols even in acidic conditions, and the catalytic activities depend on the preparative method of catalysts, the hydrogen pressure, the agitation rate, and the catalytic species. The hydrogenation of carboxylic acids and ketones clearly shows that the reaction rate is affected by the electronic and the steric effects, and a plausible reaction mechanism using metal hydrides as catalytic species is proposed.