• Title/Summary/Keyword: aging treatment

Search Result 1,525, Processing Time 0.027 seconds

Translucency changes of direct esthetic restorative materials after curing, aging and treatment

  • Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.239-245
    • /
    • 2016
  • The purpose of this article was to review the changes in translucency of direct esthetic restorative materials after curing, aging and treatment. As a criterion for the evaluation of clinical translucency changes, visual perceptibility threshold in translucency parameter difference (${\Delta}TP$) of 2 was used. Translucency changes after curing were perceivable depending on experimental methods and products (largest ${\Delta}TP$ in resin composites = 15.9). Translucency changes after aging were reported as either relatively stable or showed perceivable changes by aging protocols (largest ${\Delta}TP$ in resin composites = -3.8). Translucency changes after curing, aging and treatment were perceivable in several products and experimental methods. Therefore, shade matching of direct esthetic materials should be performed considering these instabilities of translucency in direct esthetic materials.

Early Germination Response of Soybean Seed to Accelerated Aging and Low Dose Gamma Irradiation

  • Hwangbo, Jun-Kwon;Kim, Jae-Sung;Lim, Ji-Hyeok;Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.25-29
    • /
    • 2004
  • The responses of soybean seeds were evaluated to accelerated aging and gamma irradiation with regard to germination, seed leakage, seed leachate component and dry weight of hypocotyl and primary root of the germinating seed. Accelerated aging significantly reduced the final germination rate while gamma irradiation increased the final germination rate. Furthermore, the interactive effects occurred that the final germination rate of 5-day aged seeds increased considerably in response to 4 Gy of gamma irradiation. The extent to which the electrolyte was leaked from the seeds (conductivity) was significantly affected by accelerated aging and showed a close negative correlation with the germination rate. Gamma irradiation, however, did not significantly affect the electrical conductivity of seed leachate. The accelerated aging significantly increased the concentrations of the particular electrolytes leaked from the seeds while the gamma irradiation did not affect those concentrations. Of the electrolytes leaked from the seeds, Ca and Mg showed relatively lower concentrations while K showed greater concentrations than others. Moreover, N and P showed similar responses to aging treatment. Aging treatment significantly affected dry weight (DW) of hypocotyls and primary root. Also, gamma irradiation decreased DW of hypocotyls and primary root, particularly for 8 Gy associated with 5 days aging treatment. The data were discussed in terms of the relationships of seed vigor with aging treatment and gamma irradiation.

Aging Treatment Optimization of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy for Spring Application (스프링용 Ti-3Al-8V-6Cr-4Mo-4Zr 타이타늄 합금의 시효열처리 최적화)

  • Youn, Chang-Suk;Park, Yang-Kyun;Kim, Jong-Hyung;Lee, Soo-Chang;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.279-284
    • /
    • 2017
  • Mechanical properties of titanium alloy can be improved by controlling microstructure through heat treatment. In this study, Ti-3Al-8V-6Cr-4Mo-4Zr metastable beta titanium alloy, was controlled for excellent mechanical property and sound formability through various high temperature heat treatment and aging conditions and the optimum heat treatment conditions were determined. The specimens were heat-treated at $950^{\circ}C$, followed by various aging treatments from $430^{\circ}C$ to $500^{\circ}C$ for 1 to 24 h. As aging temperature and holding time increased, hardness increased by ${\beta}^{\prime}$ phase formation and precipitation of secondary ${\alpha}$ phase in ${\beta}$ matrix. However, the optimum aging temperature and holding time for mechanical properties were at $450{\sim}470^{\circ}C$ for 8~16 hr. Hardness values of the specimen aged at $450^{\circ}C$ for 8 h were found to be the highest. These results can be effectively applied to fabrication of spring with better formability and mechanical property.

The Application of High-Intensity Ultrasound on Wet-Dry Combined Aged Pork Loin Induces Physicochemical and Oxidative Alterations

  • Yu-Min Son;Eun-Yeong Lee;AMM Nurul Alam;Abdul Samad;Md Jakir Hossain;Young-Hwa Hwang;Jeong-Keun Seo;Chul-Beom Kim;Jae-Ha Choi;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.899-911
    • /
    • 2024
  • This research investigated the synergic outcome of high intensity ultrasound (HIU) treatment and wet-dry combined aging (WDCA) on physiochemical characteristics and lipid oxidation during refrigerated storage to ameliorate pork meat's quality and shelf life. The CIE b* values, cooking loss (CL %), and pH of the HIU treated samples were higher than those of the control over the aging period. They were significantly (p<0.05) modified by the aging period and ultrasound (US) treatment. However, the released water (RW %) and moisture were not significantly influenced by US treatment (p>0.05). The Warner-Bratzler shear force of HIU-treated samples was lower over control values except in 7-14 d, and it showed a significant difference between control and US treatment according to the significance of HIU (p<0.05). The thiobarbituric acid reactive substance of HIU-treated samples was significantly higher (p<0.05) than control values over the aging period. These results suggested that HIU treatment and WDCA showed a synergistic effect of maximizing the tenderness, but lipid oxidation was higher than before ultrasonic treatment. In agreement with this, the most favorable approach would involve implementing wet aging for a period of two weeks followed by dry aging for a period not exceeding one week after the application of HIU.

Effect of Aluminum and Solute N on the Strain Aging of Extremely Low-Carbon Automotive Steel Strengthened with Cu sulfide (초극저탄소 Cu강화형 자동차용 강판 변형시효에 미치는 Aluminum 및 고용질소의 영향)

  • Hong, Moon-Hi;Yang, Hye-mi;Song, Seung-Woo;Han, Seong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • The precipitation behavior of solute carbon and nitrogen strongly affects the mechanical properties of low-carbon automotive panel. In the present study, the effects of aluminum and solute nitrogen on the bake hardenability and strain aging of extremely low-carbon steel with carbon content below 15 ppm has been investigated. The ferrite grain size and distribution of precipitates were varied with the amount of aluminum content of 0.003 to ~ 0.100 wt% in a constant solute carbon and nitrogen. With increasing the aluminum content, the ferrite grain size is increased and strain aging is delayed. The strain aging is also delayed by increasing the annealing temperature, although the ferrite grain size is not much changed.

Ultrasonic Nondestructive Evaluation of Microstructural Degradation in Artificially Aging Heat Treated 2.25CrMo Steel (인공 열화 열처리된 2.25CrMo 강의 미세조직 변화에 대한 초음파 비파괴평가)

  • Byeon, Jai Won;Kwun, S.I.;Park, Un-Su;Park, Ik-Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.2
    • /
    • pp.110-117
    • /
    • 2001
  • Artificial aging was performed to simulate the microstructural degradation in 2.25CrMo steel arising from long time exposure at $540^{\circ}C$. It was found that the carbides became coarser and spheroidized as aging time increased. An attempt was made to evaluate the microstructural degradation in artificially aging heat treated 2.25CrMo steel by the ultrasonic attenuation and velocity measurements. Ultrasonic velocity was found essentially insensitive to the microstructural changes resulting from aging heat treatment. However, the ultrasonic attenuation was observed to increase with increasing aging time. Also, it was noticed that the change of ultrasonic attenuation with aging time was more sensitive at high frequency regions.

  • PDF

Aging Behaviors of Mg-5Sn-xCa Alloys During Aging Heat Treatments (Mg-5Sn-xCa 합금의 열처리에 따른 시효특성)

  • Park, Joon-Sik;Kim, Jeong-Min;Kim, Ha-Young;Choi, Yang-Jin;Lee, Jae-Seol;Son, Hyun-Taek
    • Journal of Korea Foundry Society
    • /
    • v.28 no.5
    • /
    • pp.221-225
    • /
    • 2008
  • The structural and hardness variations of Mg-5Sn-(1,2,3) Ca (wt%) alloys have been investigated during various aging heat treatments followed by solution heat treatment at $500^{\circ}C$ for 24 hrs. Maximum hardness of Hv61 has been obtained for Mg-5Sn-3Ca alloys, when the aging treatment was performed at $200^{\circ}C$ for 24 hrs. The microstructures were critically changed when the content of Ca was more than 1wt%, since CaMgSn and $Mg_{2}Ca$ phases were mainly precipitated during aging treatments. The hardness variations with structural evolutions are discussed with respect to the aging temperatures and times.

Effects of Aging Treatment on Shape Memory and Fatigue Properties in Ni-rich Ti-Ni Alloy (Ni과잉 Ti-Ni 합금의 형상기억특성 및 피로 특성에 미치는 시효처리의 영향)

  • Kim, J.I.;Sung, J.H.;Miyazaki, S.;Lee, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • The fatigue properties of Ti-Ni shape memory alloy wires were investigated. In Ni-rich Ti-Ni shape memory alloys, $Ti_3Ni_4$ precipitates formed by aging treatments are believed to vary the shape memory and mechanical properties. In this study, the effect of aging temperature and aging time on shape memory properties and fatigue life were investigated using Ti-50.9 at% Ni alloy wires. The specimens were solution-treated at 1073 K for 3.6 ks followed by aging at 573 K, 673 K and 773 K for periods between 3.6 ks and 3600 ks. It was found that the fatigue life under a constant stress decreased with increasing aging temperature. When the specimens were aged at 573 K for periods between 36 ks and 360 ks, superior shape memory and fatigue properties were obtained. The fatigue life also decreased when the test temperature and strain amplitude increased. It was concluded that the fatigue life exhibited a linear relationship with the critical stress for slip.

Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

  • Lee, Kwang-jin;Woo, Kee-do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.448-453
    • /
    • 2011
  • Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped ${\beta}$" phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

Effect of Aging Treatment on the Microstructure and Tensile Properties of AZ61-xPd (x = 0, 1 and 2 wt%) Alloys (AZ61-xPd (x = 0, 1 and 2 wt%) Mg합금의 미세조직 및 인장특성에 미치는 열처리의 영향)

  • Kim, Sang Hyun;Kim, Byeong Ho;Park, Kyung Chul;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.711-720
    • /
    • 2012
  • In this study, the effect of aging treatment on the microstructure and tensile properties of AZ61-xPd (x = 0, 1 and 2 wt%) alloys were investigated. The microstructure of as-cast AZ61-xPd alloys mainly consisted of ${\alpha}-Mg$, $Mg_{17}Al_{12}$ and $Al_4Pd$ phases. After solution treatment, most of the $Mg_{17}Al_{12}$ phases were dissolved into the Mg matrix. Thereafter, $Mg_{17}Al_{12}$ phases were finely formed and distributed near thermally stable $Al_4Pd$ phases and inside the grains through aging treatment at $220^{\circ}C$ during 88 hours. With the aging at $220^{\circ}C$, the peak aged AZ61-xPd alloys showed higher hardness than as-cast and solution treated AZ61-xPd alloys. In particular, the AZ61-1Pd alloy was optimized due to refined $Mg_{17}Al_{12}$ and $Al_4Pd$ phases. Further, the peak aging time was reduced with increasing Pd addition (>1 wt%). Tensile strength was increased by Pd addition at $25^{\circ}C$, $150^{\circ}C$, both as-cast and peak aged AZ61-xPd alloys. After aging treatment, room and high temperature tensile strength were increased more than the as-cast specimens. The AZ61-1Pd alloy especially showed the largest strength increase range. Elongation was decreased with addition Pd at $25^{\circ}C$ and $150^{\circ}C$.