• Title/Summary/Keyword: aggregation-induced emission

Search Result 6, Processing Time 0.018 seconds

Efficient Detection of Heavy Metal Lead Ions in Aqueous Media using Aggregation-Induced Emission (AIE)-based Turn-on Fluorescence Sensor (Aggregation-Induced Emission (AIE) 기반의 Turn-On 형광센서를 이용한 수질 속 중금속 납 이온의 효율적인 검출 )

  • Haemin Choi;Hyeonjeong Seong;Juyeon Cha;Seoung Ho Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.757-765
    • /
    • 2023
  • Lead, a heavy metal widely employed in various industries, continues to pose a threat to both human health and the environment. Therefore, the development of a sensor capable of rapidly and accurately detecting lead(II) ions in real-time at contaminated sites is crucial. In this study, we have engineered a fluorescent sensor with the ability to efficiently detect lead(II) ions under actual environmental conditions, including tap water and freshwater. The compound, tetraphenylethylene carboxylic acid derivative (TPE-COOH), exhibits high selectivity and sensitivity toward lead(II) ions in aqueous solution, where the interaction between TPE-COOH and lead(II) ions leads to its aggregation, thus triggering a fluorescence "turn-on" based on the aggregation-induced emission (AIE) mechanism. Impressively, compound TPE-COOH proficiently detects lead(II) ions within a range of 30 to 100 𝜇M in tap water and freshwater, even in the presence of various interfering substances.

Aggregation-induced photoluminescence enhancement of polymetalloles by energy migration (에너지 전달을 이용한 Polymetalloles의 응집에 의해 유도되는 광발광성의 증가)

  • Kwon, Hyung-Jun;Jung, Dae-Hyuk;Song, Jin-Woo;Jang, Seung-Hyun;Kim, Bum-Seok;Kwon, Yong-Hee;Cho, Sung-Dong;Sohn, Hong-Lae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.303-308
    • /
    • 2006
  • Aggregation-induced emissions of polymetalloles have been investigated since they are very attractive in their possible optoelectronic applications such as P-LED's and Sensors. Size of nanoparticulates was measured by using scanning electron micrograph and was about 200-300 nm. Phenylmethylpolysilane (PMPS) and polymetalloles emit the light at 360 nm and 520 nm, respectively. However, the aggregates of polymetallole containing PMPS exhibit an enhanced emission band at 520 nm, indicating that the energy transfer occurs from PMPS to polymetalloles in aggregates. Emission intensity of PMPS/polymetallole nanoparticulates at 520 nm increases depending on the aliquot of PMPS.

Highly Sensitive Fluorescence Probes for Organic Vapors: On/off and Dual Color Fluorescence Switching

  • An, Byeong-Kwan;Kwon, Soon-Ki;Park, Soo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1555-1559
    • /
    • 2005
  • High-performance fluorescent probes which exhibit either on/off or dual color fluorescence switching in response to the presence of organic vapors with a rapid response, a high sensitivity and a high-contrast on/off signaling ratio were demonstrated on the basis of the vapor-controlled AIEE phenomenon.

Current research status for imaging neuroinflammation by PET

  • Namhun Lee;Jae Yong Choi
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.116-130
    • /
    • 2020
  • The aging society is globally one of biggest issue because it is related with various degenerative brain disease such as dementia, Parkinson's disease, Alzheimer's disease, multiple sclerosis, and cerebrovascular disease. These diseases are characterized by misfolded-protein aggregation; another pathological trait is "neuroinflammation". In physiological state, the resting microglia cells are activated and it removes abnormal synapses and cell membrane debris to maintain the homeostasis. In pathological state, however, microglia undergo morphological change form 'resting' to 'activated amoeboid phenotype' and the microglia cells are accumulated by neuronal damage, the inflammatory reactions induced nerve metamorphosis with a variety of neurotoxic factors including cytokines, chemokines, and reactive oxygen species. Thus, the activated microglia cell with various receptors (TSPO, COX, CR, P2XR, etc.) was perceived as important biomarkers for imaging the inflammatory progression. In this review, we would like to introduce the current status of the development of radiotracers that can image activated microglia.

A Helix-induced Oligomeric Transition of Gaegurin 4, an Antimicrobial Peptide Isolated from a Korean Frog

  • Eun, Su-Yong;Jang, Hae-Kyung;Han, Seong-Kyu;Ryu, Pan-Dong;Lee, Byeong-Jae;Han, Kyou-Hoon;Kim, Soon-Jong
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.229-236
    • /
    • 2006
  • Gaegurin 4 (GGN4), a novel peptide isolated from the skin of a Korean frog, Rana rugosa, has broad spectrum antimicrobial activity. A number of amphipathic peptides closely related to GGN4 undergo a coil to helix transition with concomitant oligomerization in lipid membranes or membrane-mimicking environments. Despite intensive study of their secondary structures, the oligomeric states of the peptides before and after the transition are not well understood. To clarify the structural basis of its antibiotic action, we used analytical ultracentrifugation to define the aggregation state of GGN4 in water, ethyl alcohol, and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The maximum size of GGN4 in 15% HFIP corresponded to a decamer, whereas it was monomeric in buffer. The oligomeric transition is accompanied by a cooperative 9 nm blue-shift of maximum fluorescence emission and a large secondary structure change from an almost random coil to an ${\alpha}$-helical structure. GGN4 induces pores in lipid membranes and, using electrophysiological methods, we estimated the diameter of the pores to be exceed $7.3{\AA}$, which suggests that the minimal oligomer structure responsible is a pentamer.