• 제목/요약/키워드: aggregate size effect

검색결과 143건 처리시간 0.029초

Effect of rubber particles on properties and frost resistance of self-compacting concrete

  • Miao Liu;Jianhua Xiao;En Yang;Lijuan Su
    • Advances in concrete construction
    • /
    • 제16권5호
    • /
    • pp.269-276
    • /
    • 2023
  • In order to study the effect of rubber particle size and admixture on the frost resistance of self-compacting concrete, three self-compacting concrete specimens with equal volume replacement of fine aggregate by rubber particles of different particle sizes were prepared, while conventional self-compacting concrete was made as a comparison specimen. The degradation law of rubber aggregate self-compacted concrete under freeze-thaw cycles was investigated by fast-freezing method test. The results show that the rubber aggregate has some influence on the mechanical properties and freeze-thaw durability of the self-compacting concrete. With the increase of rubber aggregate, the compressive strength of self-compacting concrete gradually decreases, and the smaller the rubber aggregate particle size is, the smaller the effect on the compressive strength of the matrix; rubber aggregate can improve the frost resistance of self-compacting concrete, and the smaller the rubber particle size is, the more obvious the effect on the improvement of the frost resistance of the matrix under the same dosage. Through the research of this paper, it is recommended to use 60~80 purpose rubber aggregate and the substitution rate of 10% is chosen as the best effect.

Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete

  • Kumar, Ch.Naga Satish;Krishna, P.V.V.S.S.R.;Kumar, D.Rohini
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.613-624
    • /
    • 2017
  • In this paper, an experimental investigation was carried out to study the effect of volume fraction of fiber and maximum aggregate size on mode-I fracture parameters of high strength concrete. Total of 108 beams were tested on loading frame with three point loading, the variables in the high strength concrete beams are aggregate size (20 mm, 16 mm and 10 mm) and volume fraction of fibers (0%, 0.5%, 1% and 1.5%). The fracture parameters like fracture energy, brittleness number and fracture process zone were analyzed by the size effect method (SEM). It was found that fracture energy (Gf) increases with increasing the Maximum aggregate size and also increasing the volume of fibers, brittleness number (${\beta}$) decreases and fracture process zone (CF) increases.

Evaluation of the effect of aggregate on concrete permeability using grey correlation analysis and ANN

  • Kong, Lijuan;Chen, Xiaoyu;Du, Yuanbo
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.613-628
    • /
    • 2016
  • In this study, the influence of coarse aggregate size and type on chloride penetration of concrete was investigated, and the grey correlation analysis was applied to find the key influencing factor. Furthermore, the proposed 6-10-1 artificial neural network (ANN) model was constructed, and performed under the MATLAB program. Training, testing and validation of the model stages were performed using 81 experiment data sets. The results show that the aggregate type has less effect on the concrete permeability, compared with the size effect. For concrete with a lower w/b, the coarse aggregate with a larger particle size should be chose, however, for concrete with a higher w/c, the aggregate with a grading of 5-20 mm is preferred, too large or too small aggregates are adverse to concrete chloride diffusivity. A new idea for the optimum selection of aggregate to prepare concrete with a low penetration is provided. Moreover, the ANN model predicted values are compared with actual test results, and the average relative error of prediction is found to be 5.62%. ANN procedure provides guidelines to select appropriate coarse aggregate for required chloride penetration of concrete and will reduce number of trial and error, save cost and time.

굵은골재의 최대치수가 콘크리트의 간극통과성에 미치는 영향 (Effect of Maximum Size of Coarse Aggregate on Passing Performance of Concrete between Reinforcing Bars)

  • 백대현;윤섭;김정빈;이성연;윤기원;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.77-80
    • /
    • 2006
  • This study investigated filling performance of concrete which can pass between reinforcing bars and be fully filled, and examined fundamental properties of concrete which is before or after hardened state, in response to maximum size of coarse aggregate. This study was also originally intended to find out one of the method that can improve concrete quality, using crushed coarse aggregate. Test showed that passing ratio of concrete decreased as aggregate site increased and as space between reinforcing bars decreased. In addition concrete using bigger size of coarse aggregate exhibited slightly higher compressive strength and showed lower length change ratio of drying shrinkage.

  • PDF

13mm 크기 순환굵은골재 치환이 콘크리트의 공학적 특성에 미치는 영향 (Effect of Replacement of Recycled Coarse Aggregate with 13mm on Engineering Properties of the Concrete)

  • 강병회;자오양;박재용;조만기;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.137-138
    • /
    • 2014
  • The aim of this research is suggesting the method of obtaining well-graded aggregates for concrete replacing the recycled aggregate which size range is from 5 to 13 mm to currently used gap-graded natural aggregates which size range is only 13 to 25 mm. according to the tests results, the workability of concrete was improved with replacing the aggregates of 5 to 13 mm of size range because of compensating gap-grading. Furthermore, there was an improvement in compressive strength when the aggregates of 5 to 13 mm of size range was replaced because obtained well-graded aggregates contributed on increasing adhesiveness and filling internal pore system. Comparing replacing recycled aggregate to natural aggregate, there was no significant difference on the performances.

  • PDF

비 절건상태 골재의 함수비가 골재입도분석 결과에 미치는 영향 (Effect of a Aggregate Moisture Content on Aggregate Gradation Analysis)

  • 김남호;지형준;양홍석;전순제
    • 실천공학교육논문지
    • /
    • 제13권3호
    • /
    • pp.559-566
    • /
    • 2021
  • 골재입도시험은 건설관련 전공교육에서 반드시 필요한 골재입도 시험결과에 대한 특정목적의 정확성을 평가하는 연구이다. 본 연구는 골재 함수비가 골재 입도 분석에 미치는 영향을 평가하기 위하여 수행되었다. 아스팔트 플랜트 콜드빈과 야적장에 저장된 골재의 함수비 변화를 1년간 모니터링하여, 그 결과를 기초로 함수비가 다른 골재 샘플을 제작하였다. 각 골재 샘플에 대한 입도 곡선을 분석하여 골재 함수비가 골재 입도 분석에 미치는 영향을 평가하였다. 입도평가결과, 함수비가 높아짐에 따라 오븐 건조 골재의 입도 분석에서 5 mm 이하의 입자에 대한 입자 크기의 오차가 증가하였으며, 이 오차는 입자 크기가 작아질수록 증가함을 확인하였다. 또한 5 mm 이상의 골재 입자에 대해서는 이러한 함수비 증가에 따른 입도 분석의 오차가 급격히 작아지는 것을 확인하였다. 이러한 비 절건 상태의 골재에 대한 입도분석의 오차가 아스팔트 플랜트 내 핫빈 골재 관리에 미치는 영향에 대한 분석을 수행하였다. 분석결과, 일반적인 아스팔트 플랜트에서 첫 번째 핫빈의 최소 골재 크기는 2.38 mm 이상이므로, 비 절건상태 골재로 인한 최대 입도 오차는 2% 미만인 것으로 조사되었다. 따라서 아스팔트 혼합물 생산품질관리를 위하여 콜드빈 비 절건상태 골재의 입도시험 결과를 사용하는 것은 가능해 보인다.

The use of river sand for fine aggregate in UHPC and the effect of its particle size

  • Kang, Su-Tae
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.431-441
    • /
    • 2020
  • For the purpose of improving the properties of UHPC as well as the economic efficiency in production of the material, Availability of river sands as fine aggregate instead of micro silica sand were investigated. Four different sizes of river sands were considered. Using river sand instead of micro silica sand increased the flowability, and decreased the yield stress and plastic viscosity in rheological properties, and the effect was higher with larger particle size of river sand. It was demonstrated by analyses based on the packing density. In the results of compressive strength and elastic modulus, even though river sand was not as good as micro silica sand, it could provide high strength of over 170 MPa and elastic modulus greater than 40 GPa. The difference in compressive strength depending on the size of river sand was explained with the concept of maximum paste thickness based on the packing density of aggregate. The flexural performance with river sand also presented relatively lower resistance than micro silica sand, and the reduction was greater with larger particle size of river sand. The flexural performance was proven to be also influenced by the difference in the fiber orientation distribution due to the size of river sand.

Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self compacting concrete

  • Raja Rajeshwari, B.;Sivakumar, M.V.N.
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.173-181
    • /
    • 2020
  • Fracture properties of concrete depend on the mix proportions of the ingredients, specimen shape and size, type of testing method used for the evaluation of fracture properties. Aggregates play a key role for changes in the fracture behaviour of concrete as they constitute about 60-75 % of the total volume of the concrete. The present study deals with the effect of size and quantity of coarse aggregate on the fracture behaviour of steel fibre reinforced self compacting concrete (SFRSCC). Lower coarse aggregate and higher fine aggregate content in SCC results in the stronger interfacial transition zone and a weaker stiffness of concrete compared to vibrated concrete. As the fracture properties depend on the aggregates quantity and size particularly in SCC, three nominal sizes (20 mm, 16 mm and 12.5 mm) and three coarse to fine aggregate proportions (50-50, 45-55, 40-60) were chosen as parameters. Wedge Split Test (WST), a stable test method was adopted to arrive the requisite properties. Specimens without and with guide notch were investigated. The results are indicative of increase in fracture energy with increase in coarse aggregate size and quantity. The splitting force was maximum for specimens with 12.5 mm size which is associated with a brittle failure in the pre-ultimate stage followed by a ductile failure due to the presence of steel fibres in the post-peak stage.

골재크기 및 섬유혼입률에 따른 강섬유 보강 고강도 콘크리트의 압축거동 (Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete)

  • 안경림;장석준;장상혁;윤현도
    • 콘크리트학회논문집
    • /
    • 제27권3호
    • /
    • pp.229-236
    • /
    • 2015
  • 콘크리트는 압축강도가 증가할수록 취성적인 성질이 두드러지는데, 이를 보완하기 위해 강섬유를 혼입하여 콘크리트에 연성을 부여하는 강섬유 보강 콘크리트에 대한 연구가 진행되고 있다. 강섬유 보강 콘크리트는 섬유 혼입률에 따라 역학적 특성이 달라지며, 일반적으로 1.5%의 혼입률이 가장 효과적인 것으로 알려져 있다. 섬유 혼입률 2%를 초과하게 되면 섬유 뭉침현상이 발생하는데, 이로 인해 역학적 특성이 저하된다. 본 연구에서는 2% 이상의 높은 혼입률에서 섬유의 분산성을 향상시키기 위해 굵은 골재 크기를 변수로 재령에 따른 강섬유 보강 콘크리트의 압축거동에 대해 평가하였다. 굵은 골재 크기에 따른 굳지 않은 성상, 압축강도, 탄성계수 및 압축인성 등을 평가한 결과 섬유 혼입률이 증가할수록 공기량은 증가하였으며, 공기량이 증가함에 따라서 슬럼프는 감소하였다. 또한 골재 크기가 압축강도 및 탄성계수에 미치는 영향은 미소하였지만, 섬유의 분산성을 향상시켜 압축인성 및 최대하중 이후 거동에 영향을 끼치는 것으로 나타났다. 또한 강섬유 보강 콘크리트의 압축인성은 재령이 지날수록 감소하게 되는데, 굵은 골재 크기가 감소할수록 압축인성의 감소율이 줄어들어 보다 안정적인 것으로 나타났다. 따라서 본 연구에서 나타난 것과 같이 강섬유 보강 콘크리트의 굵은 골재 크기를 조절하여 높은 혼입률을 갖는 강섬유 보강 콘크리트의 섬유 분산성과 연성적인 거동을 부여할 수 있을 것으로 판단된다.

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.