• Title/Summary/Keyword: aggregate selection

Search Result 70, Processing Time 0.026 seconds

Effect of Family Size and Genetic Correlation between Purebred and Crossbred Halfsisters on Response in Crossbred and Purebred Chickens under Modified Reciprocal Recurrent Selection

  • Singh, Neelam;Singh, Raj Pal;Sangwan, Sandeep;Malik, Baljeet Singh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.8-12
    • /
    • 2005
  • Response in a modified reciprocal recurrent selection scheme for egg production was evaluated considering variable family sizes and genetic correlation between purebred and crossbred half sisters. The criteria of selection of purebred breeders included pullet's own performance, purebred full and half sisters and crossbred half sister's performance. Heritability of egg production of crossbreds (aggregate genotype) and purebred's was assumed to be 0.2 and genetic correlation between purebred and crossbred half sisters ($r_{pc}$) as 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, -0.1, -0.2, -0.3, -0.4, -0.5 and -1.0. Number of dams per sire to produce purebred and crossbred progenies assumed to be 5, 6, 7, 8, while number of purebred female progeny ($N_p$) and crossbred progeny ($N_c$) per dam were considered to be 3, 4, 5 and 6 in each case. Considering phenotypic variance as unity, selection indices were constructed for different combinations of dams and progeny for each value of $r_{pc}$. Following selection index theory, response in crossbred and purebred for egg production was computed. Results indicated that response in crossbreds depended mainly on crossbred family size and also on magnitude of$r_{pc}$ irrespective of its direction, and response was greater with large crossbred family size than the purebred families. Correlated response in purebreds depends both on magnitude and direction of $r_{pc}$ and was expected to be greater with large purebred family size only. Inclusion of purebred information increased the accuracy of selection for crossbred response for higher magnitude of$r_{pc}$ irrespective of its direction. Present results indicate that desirable response in both crossbred and purebred performance is a function of $r_{pc}$ and family sizes. The ratio of crossbred and purebred family sizes can be optimized depending on the objective of improving the performance of crossbreds and/or of purebreds.

Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method

  • Toghroli, Ali;Darvishmoghaddam, Ehsan;Zandi, Yousef;Parvan, Mahdi;Safa, Maryam;Abdullahi, Muazu Mohammed;Heydari, Abbas;Wakil, Karzan;Gebreel, Saad A.M.;Khorami, Majid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.525-530
    • /
    • 2018
  • As a nondestructive testing method, the Schmidt rebound hammer is widely used for structural health monitoring. During application, a Schmidt hammer hits the surface of a concrete mass. According to the principle of rebound, concrete strength depends on the hardness of the concrete energy surface. Study aims to identify the main variables affecting the results of Schmidt rebound hammer reading and consequently the results of structural health monitoring of concrete structures using adaptive neuro-fuzzy inference system (ANFIS). The ANFIS process for variable selection was applied for this purpose. This procedure comprises some methods that determine a subsection of the entire set of detailed factors, which present analytical capability. ANFIS was applied to complete a flexible search. Afterward, this method was applied to conclude how the five main factors (namely, age, silica fume, fine aggregate, coarse aggregate, and water) used in designing concrete mixture influence the Schmidt rebound hammer reading and consequently the structural health monitoring accuracy. Results show that water is considered the most significant parameter of the Schmidt rebound hammer reading. The details of this study are discussed thoroughly.

Prediction of lightweight concrete strength by categorized regression, MLR and ANN

  • Tavakkol, S.;Alapour, F.;Kazemian, A.;Hasaninejad, A.;Ghanbari, A.;Ramezanianpour, A.A.
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.151-167
    • /
    • 2013
  • Prediction of concrete properties is an important issue for structural engineers and different methods are developed for this purpose. Most of these methods are based on experimental data and use measured data for parameter estimation. Three typical methods of output estimation are Categorized Linear Regression (CLR), Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). In this paper a statistical cleansing method based on CLR is introduced. Afterwards, MLR and ANN approaches are also employed to predict the compressive strength of structural lightweight aggregate concrete. The valid input domain is briefly discussed. Finally the results of three prediction methods are compared to determine the most efficient method. The results indicate that despite higher accuracy of ANN, there are some limitations for the method. These limitations include high sensitivity of method to its valid input domain and selection criteria for determining the most efficient network.

Fine Granule View Materialization in Data Cubes (데이타 큐브에서 세분화된 뷰 실체화 기법)

  • Kim, Min-Jeong;Jeong, Yeon-Dong;Park, Ung-Je;Kim, Myeong-Ho
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.587-595
    • /
    • 2001
  • Precomputation and materialization of parts. commonly called views of a data cube is a common technique in data warehouses The view is defined as the result of a query which is defined through aggregate functions In this paper we introduce the concept of fine granule view. The fine granule view is the result of a query defined through aggregate functions and the range on each dimension, where the subdivision of each dimension is based on queries access patterns. For the representation and selection of fine granule views to materialize, we define the ANO-OR cube graph and AND-OR minimum cost graph. With these structures, we propose a fine granule view materialization method. And through experiments, we evaluate the performance of the proposed method.

  • PDF

Constructing Database and Probabilistic Analysis for Ultimate Bearing Capacity of Aggregate Pier (쇄석다짐말뚝의 극한지지력 데이터베이스 구축 및 통계학적 분석)

  • Park, Joon-Mo;Kim, Bum-Joo;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.25-37
    • /
    • 2014
  • In load and resistance factor design (LRFD) method, resistance factors are typically calibrated using resistance bias factors obtained from either only the data within ${\pm}2{\sigma}$ or the data except the tail values of an assumed probability distribution to increase the reliability of the database. However, the data selection approach has a shortcoming that any low-quality data inadvertently included in the database may not be removed. In this study, a data quality evaluation method, developed based on the quality of static load test results, the engineering characteristics of in-situ soil, and the dimension of aggregate piers, is proposed for use in constructing database. For the evaluation of the method, a total 65 static load test results collected from various literatures, including static load test reports, were analyzed. Depending on the quality of the database, the comparison between bias factors, coefficients of variation, and resistance factors showed that uncertainty in estimating bias factors can be reduced by using the proposed data quality evaluation method when constructing database.

A Suggestion of Mix, Construction Method and Quality Control Criteria of Fine-size Exposed Aggregate PCC Pavement by Experimental Construction (시험시공을 통한 소입경 골재노출 콘크리트 포장의 배합, 시공 및 품질관리 기준 제안)

  • Lee, Seung-Woo;Kim, Young-Kyu;Choi, Don-Hwa;Shim, Jae-Won;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.51-63
    • /
    • 2011
  • Surface of fine-size exposed aggregate portland cement concrete pavements(FS-EAPCC) is consist by exposed coarse aggregate to remove upper 2~3mm mortar of concrete slabs. Advantages of FS-EAPCC are maintaining low-noise and adequate skid-resistance level during the performance period. However, FS-EAPCC is required rational management criteria for field application, since it is early stage for application. Design construction and quality control criteria of FS-EAPCC was temporary laboratory tests which including optimum mix and exposing method, selection of adequate aggregate, resistance against, environmental loading and etc. However, these criteria need to be validated base on field application. In this study, experimental constructions were performed and construction procedure and quality control criteria were suggested based on the performance of the FS-EAPCC.

A Cluster Group Head Selection using Trajectory Clustering Technique (궤적 클러스터링 기법을 이용한 클러스터 그룹 헤드 선정)

  • Kim, Jin-Su;Shin, Seung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5865-5872
    • /
    • 2011
  • Multi-hop communication in clustering system is the technique that forms the cluster to aggregate the sensing data and transmit them to base station through midway cluster head. Cluster head around base station send more packet than that of far from base station. Because of this hot spot problem occurs and cluster head around base station increases energy consumption. In this paper, I propose a cluster group head selection using trajectory clustering technique(CHST). CHST select cluster head and group head using trajectory clustering technique and fitness function and it increases the energy efficiency. Hot spot problem can be solved by selection of cluster group with multi layer and balanced energy consumption using it's fitness function. I also show that proposed CHST is better than previous clustering method at the point of network energy efficiency.

Stochastic MAC-layer Interference Model for Opportunistic Spectrum Access: A Weighted Graphical Game Approach

  • Zhao, Qian;Shen, Liang;Ding, Cheng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.411-419
    • /
    • 2016
  • This article investigates the problem of distributed channel selection in opportunistic spectrum access networks from a perspective of interference minimization. The traditional physical (PHY)-layer interference model is for information theoretic analysis. When practical multiple access mechanisms are considered, the recently developed binary medium access control (MAC)-layer interference model in the previous work is more useful, in which the experienced interference of a user is defined as the number of competing users. However, the binary model is not accurate in mathematics analysis with poor achievable performance. Therefore, we propose a real-valued one called stochastic MAC-layer interference model, where the utility of a player is defined as a function of the aggregate weight of the stochastic interference of competing neighbors. Then, the distributed channel selection problem in the stochastic MAC-layer interference model is formulated as a weighted stochastic MAC-layer interference minimization game and we proved that the game is an exact potential game which exists one pure strategy Nash equilibrium point at least. By using the proposed stochastic learning-automata based uncoupled algorithm with heterogeneous learning parameter (SLA-H), we can achieve suboptimal convergence averagely and this result can be verified in the simulation. Moreover, the simulated results also prove that the proposed stochastic model can achieve higher throughput performance and faster convergence behavior than the binary one.

Application of machine learning methods for predicting the mechanical properties of rubbercrete

  • Miladirad, Kaveh;Golafshani, Emadaldin Mohammadi;Safehian, Majid;Sarkar, Alireza
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.15-34
    • /
    • 2022
  • The use of waste rubber in concrete can reduce natural aggregate consumption and improve some technical properties of concrete. Although there are several equations for estimating the mechanical properties of concrete containing waste rubber, limited numbers of machine learning-based models have been proposed to predict the mechanical properties of rubbercrete. In this study, an extensive database of the mechanical properties of rubbercrete was gathered from a comprehensive survey of the literature. To model the mechanical properties of rubbercrete, M5P tree and linear gene expression programming (LGEP) methods as two machine learning techniques were employed to achieve reliable mathematical equations. Two procedures of input variable selection were considered in this study. The crucial component ratios of rubbercrete and concrete age were assumed as the input variables in the first procedure. In contrast, the volumes of the coarse and fine waste rubber and the compressive strength of concrete without waste rubber were considered the second procedure of the input variables. The results show that the models obtained by LGEP are more accurate than those achieved by the M5P model tree and existing traditional equations. Besides, the volumes of the coarse and fine waste rubber and the compressive strength of concrete without waste rubber are better predictors of the mechanical properties of rubbercrete compared to the first procedure of input variable selection.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF