• Title/Summary/Keyword: aggregate R-tree

Search Result 6, Processing Time 0.02 seconds

Efficient Execution of Range Mosaic Queries (범위 모자이크 질의의 효율적인 수행)

  • Hong, Seok-Jin;Bae, Jin-Uk;Lee, Suk-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.5
    • /
    • pp.487-497
    • /
    • 2005
  • A range mosaic query returns distribution of data within the query region as a pattern of mosaic, whereas a range aggregate query returns a single aggregate value of data within the query region. The range mosaic query divides a query region by a multi-dimensional grid, and calculates aggregate values of grid cells. In this paper, we propose a new type of query, range mosaic query and a new operator, mosaic-by, with which the range mosaic queries can be represented. In addition, we suggest efficient algorithms for processing range mosaic queries using an aggregate R-tree. The algorithm that we present computes aggregate results of every mosaic grid cell by one time traversal of the aggregate R-tree, and efficiently executes the queries with only a small number of node accesses by using the aggregate values of the aggregate R-tree. Our experimental study shows that the range mosaic query algorithm is reliable in terms of performance for several synthetic datasets and a real-world dataset.

An Indexing Technique for Range Sum Queries in Spatio - Temporal Databases (시공간 데이타베이스에서 영역 합 질의를 위한 색인 기법)

  • Cho Hyung-Ju;Choi Yong-Jin;Min Jun-Ki;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.32 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • Although spatio-temporal databases have received considerable attention recently, there has been little work on processing range sum queries on the historical records of moving objects despite their importance. Since to answer range sum queries, the direct access to a huge amount of data incurs prohibitive computation cost, materialization techniques based on existing index structures are recently suggested. A simple but effective solution is to apply the materialization technique to the MVR-tree known as the most efficient structure for window queries with spatio-temporal conditions. However, the MVR-tree has a difficulty in maintaining pre-aggregated results inside its internal nodes due to cyclic paths between nodes. Aggregate structures based on other index structures such as the HR-tree and the 3DR-tree do not provide satisfactory query performance. In this paper, we propose a new indexing technique called the Adaptive Partitioned Aggregate R-Tree (APART) and query processing algorithms to efficiently process range sum queries in many situations. Experimental results show that the performance of the APART is typically above 2 times better than existing aggregate structures in a wide range of scenarios.

Estimation of lightweight aggregate concrete characteristics using a novel stacking ensemble approach

  • Kaloop, Mosbeh R.;Bardhan, Abidhan;Hu, Jong Wan;Abd-Elrahman, Mohamed
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.499-512
    • /
    • 2022
  • This study investigates the efficiency of ensemble machine learning for predicting the lightweight-aggregate concrete (LWC) characteristics. A stacking ensemble (STEN) approach was proposed to estimate the dry density (DD) and 28 days compressive strength (Fc-28) of LWC using two meta-models called random forest regressor (RFR) and extra tree regressor (ETR), and two novel ensemble models called STEN-RFR and STEN-ETR, were constructed. Four standalone machine learning models including artificial neural network, gradient boosting regression, K neighbor regression, and support vector regression were used to compare the performance of the proposed models. For this purpose, a sum of 140 LWC mixtures with 21 influencing parameters for producing LWC with a density less than 1000 kg/m3, were used. Based on the experimental results with multiple performance criteria, it can be concluded that the proposed STEN-ETR model can be used to estimate the DD and Fc-28 of LWC. Moreover, the STEN-ETR approach was found to be a significant technique in prediction DD and Fc-28 of LWC with minimal prediction error. In the validation phase, the accuracy of the proposed STEN-ETR model in predicting DD and Fc-28 was found to be 96.79% and 81.50%, respectively. In addition, the significance of cement, water-cement ratio, silica fume, and aggregate with expanded glass variables is efficient in modeling DD and Fc-28 of LWC.

Aggregate Cubetree : Cubetree for Efficient Execution of Range-Aggregate Query (집계큐브리트리 :효율적인 범위-집계 질의의 수행을 위한 큐브트리)

  • 홍석진;송병호;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.163-165
    • /
    • 2001
  • 데이터웨어하우스 환경에서는 범위-집계 질의를 효율적으로 수행하기 위해 데이터큐브로 저장뷰를 구성한다. 큐브트리란 이러한 저장뷰를 R-Tree형태로 구성하는 기법으로, 효율적인 데이터 접근성을 제공하지만 범위-집계 질의 범위 내의 모든노드를 접근해야 하는 단점이 있다. 이 논문에서는 중간노드의 MBR에 자식 노드 레코드들의 집단함수 값을 저장하여, 질의 범위에 포함되는 중간노드의 경우 단말노드를 접근하지 않고 효율적으로 범위-집계 질의를 수행할 수 있는 집계큐브트리를 제안하였다. 집계큐브트리는 기존의 큐브트리에 비해, 항상 적은 수의 노드 접근으로 질의를 수행하며 질의 범위의 크기가 커질수록 좋은 성능을 보인다.

  • PDF

Efficient Aggregate Information Management of Spatiotemporal Data in Spatial Data Warehouses (공간 데이터 웨어하우스에서 시공간 데이터의 효율적인 집계 정보 관리 기법)

  • Ryu, Ho-Sun;You, Byeong-Seob;Park, Soon-Young;Lee, Jae-Dong;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • 다차원 분석을 위한 OLAP 연산에서는 사용자의 요청에 빠르게 응답하기 위해 집계 값을 미리 계산하여 저장해 두는 사전 집계 방식을 이용한다. 시공간 데이터에 대한 사전 집계 기법으로는 R-트리의 각 노드에 대한 과거 집계 값을 요약 테이블로 관리하는 기법과 R-트리의 노드에서 현재 집계 값을 관리하는 기법이 있다. 그러나 이 기법들은 현재와 과거 모두의 집계 정보를 필요로 하는 시스템에서는 성능이 저하되며, 특히 과거 집계 정보의 경우 시간에 따른 계층화가 되어있지 않아 시간에 대한 계층 분석에 어려움이 있다. 본 논문에서는 시공간 데이터의 현재와 과거 집계 정보를 효율적으로 관리하는 기법을 제안한다. 제안 기법은 aR-tree를 이용하여 해당 영역에 대한 현재 집계 정보를 저장하고, 각 노드에 과거 집계 정보에 대한 연결을 위하여 링크를 추가하였다. 과거 집계 정보는 각 노드의 과거에서 현재까지의 집계 정보를 계층 구조로 유지하는 시간 요약 집계 테이블을 만들어 저장한다. 따라서 제안한 기법은 현재와 과거 집계 정보를 모두 유지할 수 있으므로 현재와 과거 집계 정보에 대한 처리 성능을 향상시킨다. 또한 제안 기법에서는 공간 정보를 공간 인덱스인 R-트리로 유지하고, 과거로부터의 시간 정보를 시간 요약 집계 테이블을 이용하여 계층화시켜 유지하므로 시간과 공간에 대한 계층 분석이 용이하다.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF