• Title/Summary/Keyword: aggregate

Search Result 4,264, Processing Time 0.03 seconds

The Properties of Concrete with Lightweight Aggregate Impregnated by Phase Change Material (상변화물질 함침 경량골재를 사용한 콘크리트의 특성)

  • Kim, Se-Hwan;Jeon, Hyun-Kyu;Hwang, In-Dong;Seo, Chee-Ho;Kim, Sang-Heon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.331-338
    • /
    • 2013
  • Under the paradigm of sustainable green growth at the national level, various researches and applications for energy saving in the construction field has been attempted. As a part of energy saving efforts, lightweight concrete was investigated for thermal insulation concrete with phase change material (PCM) which has high heat storage capacity. As a part of energy saving efforts, thermal insulation concrete was investigated and evaluated with lightweight aggregate impregnated by PCM which has high heat storage capacity. As a result, it is found that concrete with lightweight aggregate impregnated by PCM is effective to prevent its quality deterioration by reducing water absorption rate of lightweight aggregate. In addition, it has shown that concretes using lightweight aggregate and impregnated lightweight aggregate improve heat insulation property 33% and 40~43% compared with using normal aggregate, respectively. It is that the lightweight aggregate concrete with impregnated lightweight aggregate has 12~14% lower thermal conductivity than unimpregnated.

Compressive Strength Properties of Concrete Using High Early Strength Cement and Recycled Aggregate with Steam Curing Conditions (조강시멘트와 순환골재를 적용한 콘크리트의 증기양생조건별 압축강도 특성)

  • Kim, Yong-Jae;Kim, Seung-Won;Park, Cheol-Woo;Sim, Jong-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.76-81
    • /
    • 2016
  • Recycled aggregate is a valuable resource in Korea in lack of natural aggregate. Government recognizes the importance and suggests various policies enhancing its use for higher value-added application. Most of recycled aggregate produced currently in Korea, however, is applied for low value-added uses such as embankment, reclamation, etc. Its higher valued application such as for structural concrete is very limited. Although domestic manufacturing technology of recycled aggregate is at the world level, recycled aggregate is not applied for structural concrete. Primary reasons for the limited use of the recycled aggregate include bonded mortar and cracks occurred during crushing and hence it is very difficult to predict and control the quality of recycled aggregate concrete. This research intended to grasp combined characteristics of recycled aggregate, high early strength cement, maximum temperature and time duration of steam curing and then, analyze the effects of factors. Also, it suggested the method to improve field applicability of recycled aggregate concrete.

Properties of Concrete Using Waste Pottery and Porcelain as Aggregates (폐도자기를 골재로 이용한 콘크리트의 특성)

  • Kang, Sung-Gu;Lee, Wan-Jo;Hwang, In-Dong;Park, Sung;Chung, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.99-103
    • /
    • 2005
  • Nowadays, large amount of waste pottery and porcelain annually are produced. It is needed that they are used as recycled materials in order to prevent environmental pollution and gain economic profits. Therefore, the purpose of this study is to present the method of utilizing the recycled aggregates that are obtained from waste pottery and porcelain as the concrete aggregate. The qualities of the recycled aggregate were compared with those of the crushed aggregate through measuring their physical properties. The test results showed that the replacement of crushed aggregate by recycled aggregate at the levels $10\%,\;20\%$, and $30\%$ had little effect on the compressive strength of the concretes, but higher levels of replacement reduced the compressive strength. Increment of the replacement of recycled aggregate caused increase in absorption ratio. As a conclusion, norman strength recycled aggregate concretes can be produced using less than $30\%$ of recycled aggregate.

Characteristics of Strength and Fracture Toughness of Recycled Aggregate Concrete (재생골재 콘크리트의 강도 및 파괴특성 실험)

  • Kim, Jin-Cheol;Yang, Sung-Chul;Cho, Yoon-Ho;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.37-45
    • /
    • 2004
  • The characteristics of concrete strength and fracture parameters of recycled aggregate concrete were investigated to apply to the concrete pavements. As the results, the early strength of recycled aggregate concrete showed to be lower than that of natural coarse aggregate concrete, whereas strength at 28 days showed to be similar. Young's modulus of recycled aggregate concrete was lower than that of natural coarse aggregate concrete due to the difference of aggregate strength. And recycled aggregate concrete contained with ground granulated blast furnace slag seemed to have an effect of strength increasing. The critical stress intensity factor of recycled aggregate concrete at the early age was increased, and converged to be similar, compared to natural aggregate concrete at later age. The reliability of two-parameter fracture model was identified by the good correlation between the theoretical value computed by P-CMOD relationship and experimental results for Young's modulus and tensile strength.

  • PDF

Evaluations of Structural Performance of Recycled Aggregate Concrete According to Replacement Ratios (치환율에 따른 순환골재 콘크리트의 구조성능 분석)

  • Nam, Jin-Won;Kim, Ho-Jin;Kim, Sung-Bae;Kim, Jang-Ho Jay;Byun, Keun Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 2007
  • This study is a fundamental research in order to establish the design code of recycled aggregate concrete structure. The structural properties of recycled aggregate concrete such as flexure, shear, fatigue, compression, and bond development are experimentally investigated and confirmed. In this study, laboratory-scale reinforced concrete beam, column, and pull-out test specimens using recycled coarse aggregate are manufactured. Then, the structural performances of recycled aggregate concrete according to replacement ratios of recycled coarse aggregate are evaluated. Also, finite element analysis using commercial code DIANA is carried out to predict the test results and the analysis results are compared with test results in this study. Structural test results showed that the structural performances of recycled aggregate concrete specimens with 60% replacement ratio are reduced by approximately 15-20%. These results indicated that the replacement ratio of recycled coarse aggregate within 30% is a suitable to use for structural members. The results of finite element analysis showed that the specimens with 30% replacement ratio possessed similar or more excellent structural performance than normal concrete specimens. However, recycled aggregate concrete with 60% replacement ratio of recycled coarse aggregate must be carefully considered for structural applications due to significant decrease of the failure loads.

  • PDF

Quality Improvement of Recycled Fine Aggregate by Neutralization Reaction in Water (습식 중화반응에 의한 순환 잔골재의 품질 향상)

  • Kim, Ha-Suk;Kim, Jin-Man;Sun, Joung-Soo;Bae, Kee-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.146-151
    • /
    • 2015
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because it is difficult to remove old mortar from aggregate. To use the recycled aggregate as high quality grade, it is important to develop the technology to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should be removed efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume, when adequate condition of sulfuric mole ratio and aggregate ratio are make.

Engineering Properties of the Concrete Using Reject Ash as Pre-mixed Fine Aggregate (리젝트애시를 잔골재로 프리믹스하여 활용하는 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.44-49
    • /
    • 2019
  • The purpose of this study is to analyze the fundamental characteristics of concrete with the change of reject ash(Reject ash=Rj) in the mixed aggregate where single grain aggregate of different grain size and aggregate of opposite grain size are mixed together, to analyze the possibility of a mixed aggregate system that premixes at an aggregate manufacturing plant and delivers it as one aggregate. As a result of the experimental study, it was found that the grain size regulation is satisfied if the mixed aggregate(CSb+SS) is substituted for about 5% of Rj. In the case of the fluidity slump, slump flow and air volume, it was found that they decrease as the substitution ratio of Rj increases, while the compressive strength increases as the substitution ratio of Rj increases. Therefore, it is analyzed that it would contribute greatly to an improvement of quality such as improvement of compressive strength if adequate fluidity and air quantity are secured by the water reducing agent and AE agent while premixing the Rj, which is disposed of by landfill, with about 5% of the mixed aggregate.

An Evaluation of the Compressive Strength of Recycled Aggregate Concrete by the Non-Destructive Testing (비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가)

  • Chung, Heon-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.63-70
    • /
    • 2004
  • The objective of this study is to evaluate the compressive strength of recycled aggregate concrete by the non-destructive testing. Main experimental variables were the replacement level of recycled aggregate and blast-furnace slag, which were divided into two series according to recycled aggregate maximum size. Test results showed that a recycled aggregate had a significant influence on the non-destructive testing results, such as rebound number, Ultrasonic pulse velocity, and frequency. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results.

Mixture Proportion and Compressive Strength of the Concrete According to Changes of Type of Fine Aggregate and Unit Binder Weight (잔골재원 및 단위결합재량 변화에 따른 콘크리트의 배합 및 강도 특성)

  • Moon, Byeong-Yong;Lee, Sus-Jae;Park, Young-Jun;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.19-20
    • /
    • 2015
  • In this research, by examining the influence that high quality fine aggregate and low quality fine aggregate have on the strength of concrete through tests, the manifest strength of concrete according to high quality fine aggregate was reviewed. The results showed that compared to low quality fine aggregate usage mixture, the unit volume to achieve the same liquidity decreased and accordingly the W/B also decreased therefore increasing the strength of concrete, and as high quality fine aggregate was used, it is determined that there can be improvements to the economically feasibility of usage mixture and improvement in durability etc.

  • PDF

Strength properties of aggregates from various locations in mid-Korea (중부지역 골재원 종류 및 변화에 따른 콘크리트의 강도발현 특성)

  • Kim, Sang-Sup;Lee, Sun-Jea;Park, Yong-Jun;Lee, Myung-Hoo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.120-121
    • /
    • 2015
  • In this research, to evaluate the influence of using non-KS aggregate on concrete performance, the engineering properties of normal strength concrete were assessed depending on the KS aggregate and non-KS aggregate from various sources in mid-Korea. From the experiment, when the non-KS aggregate was used, low compressive strength was achieved with increased water-to-cement ratio caused by increased unit water due to high absorption rate of the non-KS aggregate.

  • PDF