• Title/Summary/Keyword: agar-free

Search Result 105, Processing Time 0.027 seconds

Biodiesel production using lipase producing bacteria isolated from button mushroom bed (양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산)

  • Kim, Heon-Hee;Kim, Chan-Kyum;Han, Chang-Hoon;Lee, Chan-Jung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.

Safety and Efficacy of Fowl Adenovirus Serotype-4 Inactivated Oil Emulsion Vaccine (닭 유래 아데노 바이러스 혈청형 4형(FAdV-4) 사독 오일 백신의 안전성 및 효능 평가)

  • Kim, Ji-Ye;Kim, Jong-Nyeo;Mo, In-Pil
    • Korean Journal of Poultry Science
    • /
    • v.37 no.3
    • /
    • pp.255-263
    • /
    • 2010
  • Inclusion body hepatitis-hydropericardium syndrome (IBH-HPS) is an acute viral disease usually found in broilers aged from 3 to 5 weeks and causes up to 75% mortality. Among the 12 serotypes of fowl adenovirus group 1, serotype-4 (FAdV-4) was identified as a primary agent of IBH-HPS and was usually isolated in IBH-HPS cases in Korea since 2007. To prevent these IBH-HPS outbreaks in Korea, we developed the FAdV-4 inactivated vaccine using Korean isolate (ADL070244) and evaluated the efficacy of this vaccine. For the efficacy test, 2-week-old specific-pathogen-free (SPF) chickens intramuscularly inoculated with 1 or 2 dose of inactivated vaccine were used and challenged with FAdV-4 through either intramuscular or oral route at 2 weeks after vaccination. The vaccine induced good seroconversion which was confirmed by agar gel precipitation (AGP) test. In addition, the vaccine could decrease the FAdV-4 detection rate and histological lesion severity such as lymphocyte infiltration and necrosis in the liver comparing with those of non-vaccination group. Based on the current results, the developed FAdV-4 inactivated vaccine in this study was effective in the terms of reduction of virus detection rate and histological lesions severity. However, it was difficult to confirm the efficacy of the vaccine clearly because of no mortality and clinical signs in the non-vaccinated group after challenge. Therefore, we need further study to develop a standard challenged model system which could clearly evaluate the efficacy of the vaccines for FAdV-4.

Effects of Zizyphus jujuba var. boeunesis Extracts on the Growth of Intestinal Microflora and Its Antioxidant Activities (대추 추출물이 장내 미생물의 생육에 미치는 영향 및 항산화 활성)

  • Jeong, Hye-Mi;Kim, Yi-Seul;Ahn, Seung-Joon;Auh, Mi-Sun;Ahn, Jun-Bae;Kim, Kwang-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.4
    • /
    • pp.500-508
    • /
    • 2011
  • This study was carried out to investigate the effects of jujube extracts on intestinal microflora, along with their antioxidant activities, according to extraction method. The antimicrobial activities of the extracts were measured using the agar diffusion method with a jujube extract concentration of 50 mg/mL. Neither the first nor second jujube extracts were inhibitory against the tested intestinal bacteria. However, water extracts of jujube significantly enhanced the growth of lactic acid bacteria, especially Bifidobacterium bifidum and Bifidobacterium adolescentis. Total phenol compounds and flavonoid compounds were higher in the 1st than in the 2nd water extracts. The EDA values of both water and ethanol extracts increased in proportion to the extract concentration. The 1st water extract showed the highest value among all the others, which was 85.60% at the concentration of 0.05 mg/mL. Furthermore, the 1st water extract showed stronger antioxidant activity than the other samples with an activity of 679.91 mg AA eq/g. These results support the potential use of jujube water extracts as a functional food component and a valuable resource for the development of nutraceutical foods, to increase the growth of Bifidobacterium spp. in the human intestine.

Antimicrobial, Antioxidant and Cellular Protective Effects against Oxidative Stress of Anemarrhena asphodeloides Bunge Extract and Fraction (지모 뿌리 추출물과 분획물의 항균활성과 항산화 활성 및 세포보호 연구)

  • Lee, Yun Ju;Song, Ba Reum;Lee, Sang Lae;Shin, Hyuk Soo;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.360-371
    • /
    • 2018
  • Extracts and fractions of Anemarrhena asphodeloides Bunge were prepared and their physiological activities and components were analyzed. Antimicrobial activities of the ethyl acetate and aglycone fractions were $78{\mu}g/ml$ and $31{\mu}g/ml$, respectively, for Staphylococcus aureus and $156{\mu}g/ml$ and $125{\mu}g/ml$, respectively, for Pseudomonas aeruginosa. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activities ($FSC_{50}$) of 50% ethanol extract, ethyl acetate fraction, and aglycone fraction of A. asphodeloides extracts were $146.2{\mu}g/ml$, $23.19{\mu}g/ml$, and $71.06{\mu}g/ml$, respectively. The total antioxidant capacity ($OSC_{50}$) in an $Fe^{3+}$-EDTA/hydrogen peroxide ($H_2O_2$) system were $17.5{\mu}g/ml$, $1.5{\mu}g/ml$, and $1.4{\mu}g/ml$, respectively. The cytoprotective effect (${\tau}_{50}$) in $^1O_2$-induced erythrocyte hemolysis was 181 min with $4{\mu}g/ml$ of the aglycone fraction. The ${\tau}_{50}$ of the aglycone fraction was approximately 4-times higher than that of (+)-${\alpha}$-tocopherol (${\tau}_{50}$, 41 min). Analysis of $H_2O_2$-induced damage of HaCaT cells revealed that the maximum cell viabilities for the 50% ethanol extract, ethyl acetate fraction, and aglycone fraction were 86.23%, 86.59%, and 89.70%, respectively. The aglycone fraction increased cell viability up to 11.53% at $1{\mu}g/ml$ compared to the positive control treated with $H_2O_2$. Analysis of ultraviolet B radiation-induced HaCaT cell damage revealed up to 41.77% decreased intracellular reactive oxygen species in the $2{\mu}g/ml$ aglycone fraction compared with the positive control treated with ultraviolet B radiation. The findings suggest that the extracts and fractions of A. asphodeloides Bunge have potential applications in the field of cosmetics as natural preservatives and antioxidants.

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF