• Title/Summary/Keyword: affinity binding

Search Result 788, Processing Time 0.025 seconds

The Study of anti-inflammatory Mechanism with Cobra Venom on Astrocytes of Rats (뇌(腦) 성상세포(星狀細胞)를 대상으로 한 Cobrotoxin의 염증(炎症) 치료(治療) 기전(機轉) 연구(硏究))

  • Yoo, Jae-ryong;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.155-167
    • /
    • 2005
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effect of Cobrotoxin on binding affinity of cobrotoxin with P50, $IKK{\alpa}$ and $IKK{\beta}$, activities of NF-${\kappa}B$, Cell viability of astrocyte, expressions of protein molecules of NF-${\kappa}B$ such as P50, P-$1{kappa}B$, $1{\kappa}B$ and iflammation related genes such as Cox-2, iNOS, cPLA2 in the SNP or LPS induced Inflammatory pathway of Rats' astrocytes. Methods : In this study, The expression of cytosolic phospholipase A2, Nitric oxcide, Cyclooxygenase-2 and inducible nitrogen oxide synthase was determined by western blotting with corresponding antibodies, and the generation of NF-${\kappa}B$ was assayed by EMSA method in astrocytes of rats. The Cell viability of astrocytes was determined by MTT assay, and Binding affinity of Cobrotoxin with P50, $IKK{\alpha}$ and $IKK{\beta}$ was assayed by Surface plasmon resonance analysis, and NF-${\kappa}B$ dependent luciferase activity was determined by luciferase analysis, and Uptake of cobrotoxin in astrocytes was identified by Confocal laser scanning microscope Results : 1. Compared with control, LPS-induced NF-${\kappa}B$ DNA binding activity was decreased significantly by 0.1, $0.5{\mu}g/m{\ell}$ of Cobrotoxin in Astrocyte. 2. Compared with control, LPS-induced NF-kB dependent luciferase expression was decreased significantly by 0.1, 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin in Astrocyte. 3. Compared with control, SNP induced P50, $I{\kappa}B$ expressions in astrocyte were decreased significantly by 0.1, 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin and P-$1{\kappa}B$ expression was decreased significantly by 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin. 4. Compared with control, LPS induced P50, $1{\kappa}B$ expressions in astrocyte were decreased significantly by 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin. 5. Compared with control, SNP induced Cox-2, iNOS, CPLA2 expressions in astrocyte were decreased significantly by $1{\mu}g/m{\ell}$ of Cobrotoxin. 6. Compared with control, LPS induced Cox-2, cPLA2 expressions in astrocyte were decreased significantly by 0.1, 0.5, $1{\mu}g/m{\ell}$ of Cobrotoxin and iNOS expression was decreased significantly by 0.5, $1{\mu}g/m{\ell}$ of Cobrotoxin. 7. Compared with $0.5{\mu}g/m{\ell}$ of Cobrotoxin, SNP-induced NF-${\kappa}B$ DNA bindins activity in astrocyte was increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM. 8. Compared with $0.5{\mu}g/m{\ell}$ of Cobrotoxin, LPS-induced NF-${\kappa}B$ DNA binding activity in astrocyte was increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM, Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM, Cobrotoxin $0.5{\mu}g/m{\ell}$with GSH 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 5mM 9. Compared with $0.1{\mu}g/m{\ell}$ of cobrotoxin, SNP induced P50 expressions in astrocyte were increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM, Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 5mM. 10. The uptake of the labeled cobrotoxin into the cells was shown under a confocal laser scanning microscope. cobrotoxin was uptaken into the membrane and nucleus of astrocytes. Conclusions : In summary, the present results demonstrate that cobrotoxin directly binds to sulfhydryl group of p50 and IKKS resulting In the reduction of translocation of p50 and IkB release, thereby inhibits activation of NF-${\kappa}B$, and suggest that pico to nanomolar range of cobrotoxin could inhibit the expression of genes in the NF-${\kappa}B$ signal pathway.

  • PDF

Effect of Acutely Increased Glucose Uptake on Insulin Sensitivity in Rats (단기간의 당섭취 증가가 인슐린 감수성에 미치는 영향)

  • Kim, Yong-Woon;Ma, In-Youl;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.53-66
    • /
    • 1997
  • Insulin resistance is a prominent feature of diabetic state and has heterogeneous nature. However, the pathogenetic sequence of events leading to the emergence of the defect in insulin action remains controversial. It is well-known that prolonged hyperglycemia and hyperinsulinemia are one of the causes of development of insulin resistance, but both hyperglycemia and hyperinsulinemia stimulate glucose uptake in peripheral tissue. Therefore, it is hypothesized that insulin resistance may be generated by a kind of protective mechanism preventing cellular hypertrophy. In this study, to evaluate whether the acutely increased glucose uptake inhibits further glucose transport stimulated by insulin, insulin sensitivity was measured after preloaded glucose infusion for 2 hours at various conditions in rats. And also, to evaluate the mechanism of decreased insulin sensitivity, insulin receptor binding affinity and glucose transporter 4 (GLUT4) protein of plasma membrane of gastrocnemius muscle were assayed after hyperinsulinemic euglycemic clamp studies. Experimental animals were divided into five groups according to conditions of preloaded glucose infusion: group I, basal insulin ($14{\pm}1.9{\mu}U/ml$) and basal glucose ($75{\pm}0.7mg/dl$), by normal saline infusion; group II, normal insulin ($33{\pm}3.8{\mu}U/ml$) and hyperglycemia ($207{\pm}6.3mg/dl$), by somatostatin and glucose infusion; group III, hyperinsulinemia ($134{\pm}34.8{\mu}U/ml$) and hyperglycemia ($204{\pm}4.6mg/dl$), by glucose infusion; group IV, supramaximal insulin ($5006{\pm}396.1{\mu}U/ml$) and euglycemia ($l00{\pm}2.2mg/dl$), by insulin and glucose infusion; group V, supramaximal insulin ($4813{\pm}687.9{\mu}U/ml$) and hyperglycemia ($233{\pm}3.1mg/dl$), by insulin and glucose infusion. Insulin sensitivity was assessed with hyperinsulinemic euglycemic clamp technique. The amounts of preloaded glucose infusion(gm/kg) were $1.88{\pm}0.151$ in group II, $2.69{\pm}0.239$ in group III, $3.54{\pm}0.198$ in group IV, and $4.32{\pm}0.621$ in group V. Disappearance rates of glucose (Rd, mg/kg/min) at steady state of hyperinsulinemic euglycemic clamp studies were $16.9{\pm}3.88$ in group I, $13.5{\pm}1.05$ in group II, $11.2{\pm}1.17$ in group III, $13.2{\pm}2.05$ in group IV, and $10.4{\pm}1.01$ in group V. A negative correlation was observed between amount of preloaded glucose and Rd (r=-0.701, p<0.001) when all studies were combined. Insulin receptor binding affinity and content of GLUT4 were not significantly different in all experimental groups. These results suggest that increased glucose uptake may inhibit further glucose transport and lead to decreased insulin sensitivity.

  • PDF

In Vitro Properties and Biodistribution of Tc-99m and Re-188 Labeled Monoclonal Antibody CEA79.4 (Re-188과 Tc-99m 표지 단일클론항체 CEA79.4의 생체외 특성과 생체내 분포)

  • Hong, Mee-Kyoung;Jeong, Jae-Min;Yeo, Jeong-Seok;Kim, Kyung-Min;Chang, Young-Soo;Lee, Yong-Jin;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Lee, Seung-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.516-524
    • /
    • 1998
  • Purpose: Radiolabeled CEA79.4 antibody has a possibility to be used in radioimmunoscintigraphy or radioimmunotherapy of cancer. We investigated the in vitro properties and biodistribution of CEA79.4 antibody labeled with Re-188 or Tc-99m. Materials and Methods: CEA79.4 was reduced by 2-mercaptoethanol to produce-SH residue, and was labeled with Re-188 or Tc-99m. For direct labeling of Tc-99m, methylene-diphosphonate was used as transchelating agent. CEA79.4 in 50 mM Acetate Buffered Saline (ABS, pH 5.3) was labeled with Re-188, using stannous tartrate as reducing agent. In order to measure immunoreactivity and the affinity constant of radiolabeled antibody, cell binding assay and Scatchard analysis using human colon cancer cells SNU-C4, were performed. Biodistribution study of labeled CEA79.4 was carried out at 1, 14 and 24 hr in ICR mice. Results: Labeling efficiencies of Tc-99m and Re-188 labeled antibodies were $92.4{\pm}5.9%$ and $84.7{\pm}4.6%$, respectively, In vitro stability of Tc-99m-CEA79.4 in human serum was higher than Re-188-CEA79.4. Immunoreactivity and affinity constant of Tc-99m-CEA79.4 were 59.2% and $6.59{\times}10^9\;M^{-1}$, respectively, while those of Re-188-CEA79.4 were 41.6% and $4.2{\times}10^9\;M^{-1}$, respectively. After 24 hr of administrations of Re-188 and Tc-99m labeled antibody, the remaining antibodies in blood were 6.32 and 9.35% ID/g respectively. The biodistribution of each labeled antibody in other organs was similar because they did not accumulate in non-targeted organs. Conclusion: In vitro properties and biodistribution of Re-188-CEA79.4 were similar to those of Tc-99m-CEA79.4. It appears that Re-188-CEA79.4 can be used as a suitable agent for radioimmunotheraphy.

  • PDF

Identification of a Potexvirus in Korean Garlic Plants (한국 마늘 Potexvirus의 cDNA 유전자 분리 및 분포에 관한 연구)

  • Song, Jong-Tae;Choi, Jin-Nam;Song, Sang-Ik;Lee, Jong-Seob;Choi, Yang-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • To understand the molecular structure of Korean garlic viruses, cDNA cloning of virus genomic RNA was attempted. Virus particles were isolated from virus-infected garlic leaves and a cDNA library was constructed from garlic virus RNA. One of these clones, S81, selected by random sequencing has been identified as a member of potexvirus group other than potyvirus and carlavirus. The clone is 873 bp long contains most of the coat protein (CP) coding region and 3'-noncoding region including poly(A) tail. A putative polyadenylation signal sequence (AAUAAA) and the hexanucleotide motif (ACUUAA), a replicational cis-acting element conserved in the 3'-noncoding region of potexvirus RNAs are noticed. The clone S81 shows about 30-40% identity in both nucleotide and amino acid sequences with CPs of potexviruses. The genome size of the virus was analysed to be 7.46 knt by Northern blot analysis, which was longer than those of other potexviruses. The open reading frame encoding CP was expressed as a fusion protein (S81CP) in Escherichia coli and the recombinant protein was purified by immobilized metal binding affinity chromatography. Polyclonal antibody was raised against S81CP in rabbit to examine the occurrence of garlic potexvirus in Korean garlic plants by immunoblot analysis. Two virus protein bands of Mr 27,000 and 29,000 from garlic leaf extract of various cultivars reacted with the antibody. It was shown that Mr 27,000 band might not be a degradation product of Mr 29,000 band, suggesting that two types of potexvirus different in size of coat protein could exist in Korean garlic plants.

  • PDF

Cloning and Characterization of Phosphoinositide 3-Kinase γ cDNA from Flounder (Paralichthys olivaceus) (넙치에서 분리된 phosphoinositide 3-kinase γ 유전자의 클로닝 및 특성 연구)

  • Jeong, Tae Hyug;Youn, Joo Yeon;Ji, Keunho;Seo, Yong Bae;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.343-351
    • /
    • 2014
  • Phosphoinositide 3-kinase (PI3K) plays a central role in cell signaling and leads to cell proliferation, survival, motility, exocytosis, and cytoskeletal rearrangements, as well as specialized cell responses, superoxide production, and cardiac myocyte growth. PI3K is divided into three classes; type I PI3K is preferentially expressed in leukocytes and activated by ${\beta}{\gamma}$ subunits of heterotrimeric G-proteins. In this study, the cDNAs encoding the $PI3K{\gamma}$ gene were isolated from a brain cDNA library constructed using the flounder (Paralichthys olivaceus). The sequence of the isolated $PI3K{\gamma}$ was 1341 bp, encoding 447 amino acids. The nucleotide sequence of the $PI3K{\gamma}$ gene was analyzed with that of other species, including Oreochromis niloticus and Danio rerio, and it turned out to be well conserved during evolution. The $PI3K{\gamma}$ gene was subcloned into the expression vector pET-44a(+), and expressed in the E. coli BL21 (DE3) codon plus cell. The resulting protein was expressed as a fusion protein of approximately 49 kDa containing a C-terminal six-histidine extension that was derived from the expression vector. The expressed protein was purified to homogeneity by His-tag affinity chromatography and showed enzymatic activity corresponding to $PI3K{\gamma}$. The binding of wortmannin to $PI3K{\gamma}$, as detected by anti-wortmannin antisera, closely followed the inhibition of the kinase activities. The results obtained from this study will provide a wider base of knowledge on the primary structure and characterization of the $PI3K{\gamma}$ at the molecular level.

The Stability of p53 in Ras-mediated Senescent Cells in Response to Nucleolar Stress (Ras에 의해 유도된 노화세포에서 핵인 스트레스에 의한 p53 안정화 연구)

  • Sihn, Choong-Ryoul;Park, Gil-Hong;Lee, Kee-Ho;Kim, Sang-Hoon
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.436-441
    • /
    • 2009
  • B23/nucleophosmin, a nucleolar protein, translocates into the nucleus from the nucleolus when cells are damaged by extracellular stresses. Recently, it was shown that such translocation of B23/nucleophosmin in normal fibroblasts under stress conditions increases both the stability and activation of the p53 protein by disrupting its interaction with MDM2. Senescent cells have a single large nucleolus and a diminished capacity to induce p53 stability upon exposure to various DNA damaging agents. To investigate the role of B23/nucleophosmin in p53 stability in senescent cells, we established a senescence model system by expressing the ras oncogene in IMR90 cells. The stability of p53 was reduced in these cells in response to nucleolar stress, although the level of B23/nucleophosmin protein was not changed. In addition, p53 did not accumulate in the nucleus and B23/nucleophosmin did not translocate into the nucleoplasm. The binding affinity of B23/nucleophosmin with p53 was reduced in senescent cells, whereas the interaction between MDM2 and p53 was stable. Taken together, the stability of p53 in ras-induced senescent cells may be influenced by the ability of B23/nucleophosmin to interact with p53 in response to nucleolar stress.

Characterization of Melanin-concentrating Hormone from Olive Flounder (Paralichthys olivaceus) (양식넙치 멜라닌 농축 호르몬의 특성)

  • Chung, In Young;Jeon, Jeong Min;Song, Young Hwan
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.284-292
    • /
    • 2018
  • The melanin-concentrating hormone (MCH), a cyclic hypothalamic peptide composed of 17 amino acids, was initially identified in chum salmon (Oncorhynchus keta) as a regulator of pigmentation. Mammalian MCHs are cyclic hypothalamic peptides composed of 19 amino acids that regulate food intake and energy homeostasis. The present study examined not only MCH expression of different tissues but also the melanohore aggregation and intracellular $Ca^{2+}$ influx of fMCH and the other MCH. Real-time qPCR showed that MCH expressed specially in the brain, gonad, and ovary, and expression of MCH was observed during the developmental stages. In the application of synthetic fMCH and both types of synthetic fMCH, dN-fMCH and dC-fMCH, scale melanophore induced significant changes in aggregation activity with various concentrations of MCH. Also, compared to hMCH and sMCH, fMCH exhibited a 36~99.85% increase in relative potency (%), whereas aggregation of dN-fMCH and dC-fMCH remained in a high concentration. However, dispersion was induced rapidly according to be low concentration of dN-fMCH and dC-fMCH. We show that fMCH and its derivates were bound human MCHR1 and rat MCHR expressed in HEK293T cells with nano-molar affinity and are likely to be ligand-induced to mobilize intracellular $Ca^{2+}$. These results may provide new ligands for binding assay with MCHew ligands, as a structure similar to the mammalian MCH structure was discovered in fish. Once the fMCH receptor system is in place, it can be compared to the MCH system of mammals in terms of MCH function.

Characterization of the Monoclonal Antibody Specific to Human S100A2 Protein (인체 S100A2 단백질에 특이적인 단일클론 항체)

  • Kim, Jae Wha;Yoon, Sun Young;Kim, Joo Heon;Joo, Jong-Hyuck;Kim, Jin Sook;Lee, Younghee;Yeom, Young Il;Choe, Yong-Kyung;Choe, In Seong
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Background: The S100A2 gene, also known as S100L or CaN19, encodes a protein comprised of 99-amino acids, is a member of the calcium-binding proteins of EF-hand family. According to a recent study, this gene was over-expressed in several early and malignant carcinomas compared to normal tissues. To elucidate the role of S100A2 protein in the process during carcinogenesis, production of monoclonal antibody specific to the protein is essential. Methods: First, cDNA sequence coding for ORF region of human S100A2 gene was amplified and cloned into an expression vector to produce GST fusion protein. Recombinant S100A2 protein and subsequently, monoclonal antibody to the protein were produced. The specificity of anti-S100A2 monoclonal antibody was confirmed by immunoblot analysis of cross reactivity to other recombinant proteins of S100A family (GST-S100A1, GST-S100A4 and GST-S100A6). To confirm the relation of S100A2 to cervical carcinogenesis, S100A2 protein in early cervical carcinoma tissue was immunostained using the monoclonal antibody. Results: GST-S100A2 recombinant protein was purified by affinity chromatography and then fusion protein was cleaved and S100A2 protein was isolated. The monoclonal antibody (KK0723; Korean patent pending #2001-30294) to the protein was produced and the antibody did not react with other members of EF-hand family proteins such as S100A1, S100A4 and S100A6. Conclusion: These data suggest that anti-S100A2 monoclonal antibody produced in this study can be very useful for the early detection of cervical carcinoma and elucidation of mechanism during the early cervical carcinogenesis.

Functional Significance of Cytochrome P450 1A2 Allelic Variants, P450 1A2*8, *15, and *16 (R456H, P42R, and R377Q)

  • Lim, Young-Ran;Kim, In-Hyeok;Han, Songhee;Park, Hyoung-Goo;Ko, Mi-Jung;Chun, Young-Jin;Yun, Chul-Ho;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.189-194
    • /
    • 2015
  • P450 1A2 is responsible for the metabolism of clinically important drugs and the metabolic activation of environmental chemicals. Genetic variations of P450 1A2 can influence its ability to perform these functions, and thus, this study aimed to characterize the functional significance of three P450 1A2 allelic variants containing nonsynonymous single nucleotide polymorphisms (P450 $1A2^*8$, R456H; $^*15$, P42R; $^*16$, R377Q). Variants containing these SNPs were constructed and the recombinant enzymes were expressed and purified in Escherichia coli. Only the P42R variant displayed the typical CO-binding spectrum indicating a P450 holoenzyme with an expression level of ~ 170 nmol per liter culture, but no P450 spectra were observed for the two other variants. Western blot analysis revealed that the level of expression for the P42R variant was lower than that of the wild type, however the expression of variants R456H and R377Q was not detected. Enzyme kinetic analyses indicated that the P42R mutation in P450 1A2 resulted in significant changes in catalytic activities. The P42R variant displayed an increased catalytic turnover numbers ($k_{cat}$) in both of methoxyresorufin O-demethylation and phenacetin O-deethylation. In the case of phenacetin O-deethylation analysis, the overall catalytic efficiency ($k_{cat}/K_m$) increased up to 2.5 fold with a slight increase of its $K_m$ value. This study indicated that the substitution P42R in the N-terminal proline-rich region of P450 contributed to the improvement of catalytic activity albeit the reduction of P450 structural stability or the decrease of substrate affinity. Characterization of these polymorphisms should be carefully examined in terms of the metabolism of many clinical drugs and environmental chemicals.

The Uptake of 2-deoxy-D-glucose (2dGlc) by the Endogenous Sugar Transporter(s) of Spodoptera frugiperda Clone 21-AE Cells and the Inhibition of 2dGIc Transport in the Insect Cells by Fructose and Cytoc halasin B

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.177-181
    • /
    • 2003
  • The baculovirus/Spodoptera frugiperda (Sf) cell system has become popular for the production of large amounts of the human erythrocyte glucose transporter, GLUT1, heterologously. However, it was not possible to show that the expressed transporter in insect cells could actually transport glucose. The possible reason for this was that the activity of the endogenous insect glucose transporter was extremely high and so rendered transport activity resulting from the expression of exogenous transporter very difficult to detect. Sf21-AE cells are commonly employed as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains 0.1 % D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike the human glucose transporter, very little is known about properties of the endogenous sugar transporter(s) in insect cells. Thus, the uptake of 2-deoxy-D-glucose (2dGlc) by Sf21-AE cells and the inhibition of 2dGlc transport in the insect cells by fructose and cytochalasin B were investigated in the present work. The binding assay of cytochalasin B was also performed, which could be used as a functional assay for the endogenous glucose transporter(s) in the insect cells. Sf21-AE cells were infected with the recombinant virus AcNPV-GT or no virus, at a multiplicity of infection (MOI) of 5. Infected cells were resuspended in PBS plus and minus 300 mM fructose, and plus and minus 20 $\mu$M cytochalasin B for use in transport assays. Uptake was measured at 28$^{\circ}C$ for 1 min, with final concentration of 1 mM deoxy-D-glucose, 2-[1,2-$^3$H]- or glucose, L-[l,$^3$H]-, used at a specific radioactivity of 4 Ci/mol. The results obtained demonstrated that the sugar uptake in uninfected cells was stereospecific, and was strongly inhibited by fructose but only poorly inhibitable by cytochalasin B. It is therefore suggested that the Sf21-AE glucose transporter has very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF