• Title/Summary/Keyword: aerospace structures

Search Result 700, Processing Time 0.03 seconds

Study on failure mechanism of line contact structures of nuclear graphite

  • Jia, Shigang;Yi, Yanan;Wang, Lu;Liu, Guangyan;Ma, Qinwei;Sun, Libin;Shi, Li;Ma, Shaopeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2989-2998
    • /
    • 2022
  • Line contact structures, such as the contact between graphite brick and graphite tenon, widely exist in high-temperature gas-cooled reactors. Due to the stress concentration effect, the line contact area is one of the dangerous positions prone to failure in the nuclear reactor core. In this paper, the failure mechanism of line contact structures composed of IG11 nuclear graphite column and brick were investigated by means of experiment and finite element simulation. It was found that the failure process mainly includes three stages: firstly, the damage accumulation in nuclear graphite material led to the characteristic yielding of the line contact structure, but no macroscopic failure can be observed at this stage; secondly, the stresses near the contact area met Mohr failure criterion, and a crack initiated and propagated laterally in the contact zone, that is, local macroscopic failure occurred at this stage; finally, a second crack initiated in the contact area and developed in to a Y-shape, resulting in the final failure of the structure. This study lays a foundation for the structural design and safety assessment of high-temperature gas-cooled reactors.

Design Optimization of Composite Radar Absorbing Structures to Improve Stealth Performance

  • Jang, Byungwook;Kim, Myungjun;Park, Jungsun;Lee, Sooyong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • In this study, an efficient method of designing laminate composite radar absorbing structures (RAS) is proposed with consideration given to the structural shape so as to improve aircraft stealth performance. The calculation of the radar cross section (RCS) should be decreased to enhance the efficiency of the stochastic optimization when designing an RAS. In the proposed method, RAS are optimized to match up the input impedance of the minimal RCS, which is obtained by using physical optics and the transmission line theory. Single and double layer dielectric RAS for aircraft wings are employed as numerical examples and designed using the proposed method, RCS minimization and reflection coefficient minimization. The availability of the proposed method is assessed by comparing the similarity of the results and computation time with other design methods. According to the results, the proposed method produces the same results as the stochastic optimization, which adopts the RCS as the objective function, and can improve RAS design efficiency by reducing the number of RCS analyses.

Turbopump Performance Prediction by Using CFD Analysis

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Hong, Soon-Sam;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.403-406
    • /
    • 2008
  • The performance of an entire pump system composed of an inducer, an impeller, a volute and seals has been computationally analyzed. A commercial three dimensional Reynolds Averaged Navier-Stokes method is used in this study. The axial thrust is predicted from the pump calculation in its entirety, which is necessary for such estimation. Moreover, the effects of each component on the pump performance are investigated at a design condition through the analysis of flow structures. The predicted performance is in good agreement with experimental data in terms of head rise, efficiency and volute wall pressure distributions despite of highly complex flow structures being present. The computational results also show that the axial and radial thrusts are within the design limit although corresponding experimental measurements were not taken.

  • PDF

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

Hinge rotation of a morphing rib using FBG strain sensors

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Flauto, Domenico;Mennella, Fabio
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1393-1410
    • /
    • 2015
  • An original sensor system based on Fiber Bragg Gratings (FBG) for the strain monitoring of an adaptive wing element is presented in this paper. One of the main aims of the SARISTU project is in fact to measure the shape of a deformable wing for performance optimization. In detail, an Adaptive Trailing Edge (ATE) is monitored chord- and span-wise in order to estimate the deviation between the actual and the desired shape and, then, to allow attaining a prediction of the real aerodynamic behavior with respect to the expected one. The integration of a sensor system is not trivial: it has to fit inside the available room and to comply with the primary issue of the FBG protection. Moreover, dealing with morphing structures, large deformations are expected and a certain modulation is necessary to keep the measured strain inside the permissible measure range. In what follows, the mathematical model of an original FBG-based structural sensor system is presented, designed to evaluate the chord-wise strain of an Adaptive Trailing Edge device. Numerical and experimental results are compared, using a proof-of-concept setup. Further investigations aimed at improving the sensor capabilities, were finally addressed. The elasticity of the sensor structure was exploited to enlarge both the measurement and the linearity range. An optimisation process was then implemented to find out an optimal thickness distribution of the sensor system in order to alleviate the strain level within the referred component.

Nonlinear Structural Analysis of High-Aspect-Ratio Structures using Large Deflection Beam Theory

  • Kim, Kyung-Seok;Yoo, Seung-Jae;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • The nonlinear structural analyses of high-aspect-ratio structures were performed. For the high-aspect-ratio structures, it is important to understand geometric nonlinearity due to large deflections. To consider geometric nonlinearity, finite element analyses based on the large deflection beam theory were introduced. Comparing experimental data and the present nonlinear analysis results, the current results were proved to be very accurate for the static and dynamic behaviors for both isotropic and anisotropic beams.

A review of health and operation monitoring technologies for trains

  • Chong, See Yenn;Lee, Jung-Ryul;Shin, Hye-Jin
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1079-1105
    • /
    • 2010
  • Railway transport of goods and passengers is effective in terms of energy conservation and travel time savings. Safety and ride quality have become important issues as train speeds have increased. Due to increased speeds, minor damage to railway structures and abnormal interactions between trains and structures have given rise to increasingly serious accidents. Therefore, structural health and operational conditions must be monitored continuously in all service environments. Currently, various health and operation management systems are being developed and these are reducing both maintenance frequency and costs associated with disassembly. In this review, major damage and malfunctions and their locations are first analyzed based on numerous references. Then advanced train health and operation management technologies are classified into wayside detection methods and advanced integrated sensor methods and their operating principle and functions are reviewed and analyzed.

Dynamic sensitivity analysis and optimum design of aerospace structures

  • Gu, Yuanxian;Kang, Zhan;Guan, Zhenqun;Jia, Zhiwen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • The research and applications of numerical methods of design optimization on structural dynamic behaviors are presented in this paper. The emphasis is focused on the dynamic design optimization of aerospace structures, particularly those composed of composite laminate and sandwich plates. The methods of design modeling, sensitivity analysis on structural dynamic responses, and the optimization solution approaches are presented. The numerical examples of sensitivity analysis and dynamic structural design optimization are given to demonstrate the effectiveness of the numerical methods.

Dynamic Stability of Particle-Lattice Structures Simulating Swarms in Turbulence (군집을 모사한 입자-격자 구조의 난류 내 동적 안정성)

  • Oh, Jeong Suk;Yoon, Sung Gun;Park, Han June;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.32-38
    • /
    • 2019
  • The dynamic stability of swarms is crucial in preventing collisions in clustered flights and safely moving along a defined path. Although there have been many simulation studies on dynamic stability, there have not been many experimental studies using real clusters due to the difficulty in implementation. In this study, we constructed a particle-lattice structure simulating bird flocks or drone swarms, and conducted experiments within turbulent flow. We identified a criterion that describes dynamically stable particle-lattice structures. The stability increased as this newly defined spatial index increased.