• 제목/요약/키워드: aerosols

검색결과 583건 처리시간 0.027초

석탄화력 발전소, 숯가마, 디젤차량에서 배출되는 Black Carbon의 물리화학적 특성화 연구 (Physico-Chemical Characterization of Black Carbon Emitted from Coal-fired Power Plant, Charcoal Kiln and Diesel Vehicle)

  • 새살도;김진영;심상규;진현철;김종수
    • 한국대기환경학회지
    • /
    • 제29권2호
    • /
    • pp.152-162
    • /
    • 2013
  • The physico-chemical characteristics and nanostructure of the aerosol samples from a coal-fired power plant, a charcoal kiln and diesel vehicles were investigated with focusing on black carbon (BC). Aerosols from the coal-fired power plant were mostly comprised of mineral ash spheres which are heterogeneously mixed. The main components of the aerosols from coal-fired power plant were calcium compounds, iron oxide, alumino-silicate without BC. The typical combustion-generated BC which shows the shape of bunch of grapes with 20~50 nm particles which were detected in aerosol particles from diesel vehicles. The nanostructure of each BC particle shows the shape of concentric circles which is comprised of closely-packed graphene layers. Aerosols from charcoal kiln were likely condensed organic carbon generated from the low-temperature combustion process.

RELATIONSHIP BETWEEN AEROSOLS AND SPM

  • Yasumoto, Masayoshi;Mukai, Sonoyo;Sano, Itaru
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.305-307
    • /
    • 2006
  • A multi-spectral photometer was set up as an NASA/AERONET site at Kinki University campus in Higashi-Osaka in 2002 for measuring urban aerosols. In addition, the SPM-613D (Kimoto Electric) commenced measurement of suspended particles matter (SPM) as $PM_{10}$ and $PM_{2.5}$ on March 15, 2004 at the same AERONET site. The obtained results revealed that the poor air quality of the Higashi-Osaka site is due not only to anthropogenic particles from local emissions, such as diesel vehicles and chemical industries, but also to dust particles brought from continental desert areas by large scale climatic conditions. To understand the characteristics of background atmosphere over Higashi-Osaka, we examined the relationship between $PM_{2.5}$ concentration and aerosol optical thickness (AOT) at a wavelength of 0.87 μm based on AERONET data for background atmosphere (AOT<0.2). We obtained a linear regression line between AOT and $PM_{2.5}$ concentration. Using the linear relationships between AOT and $PM_{2.5}$, we show ground-level concentrations of $PM_{2.5}$ of background atmosphere from Terra/MODIS satellite measurements.

  • PDF

구름, 에어로솔의 라이다 계측 편광 소멸도 분석 (Analysis of aerosol and cloud depolarization ratios measured by lidar)

  • 박찬봉;이영우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.442-444
    • /
    • 2012
  • 이중 편광 라이다로 계측된 에어로솔과 구름의 편광소멸도를 분석하였다. 구름과 먼지, 그리고 구형 에어로솔에 대한 1064 nm와 532 nm의 파장별 후방산란비의 비(RDR)를 각각 비교하였다. 구형 에어로솔의 경우 RDR 값은 1.5~6, 먼지는 0.98~4, 그리고 구름의 경우에는 0.7~1.77의 값을 나타내었다. 먼지의 수직분포와 상대습도를 비교하였다. 평균적으로 30~60%의 상대습도가 먼지층에 분포하였다. 하지만 70%이상의 값도 빈번히 계측되었으고, 이의 경우 먼지에 대한 RDR 값은 2~4 정도로 증가하였다.

  • PDF

Development of a PM Sampler for Collecting Fine Particles via Condensation Magnification

  • Kim, D.S.;Kang, C.H.;Hong, S.B.;Lee, K.W.;Lee, J.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E1호
    • /
    • pp.24-31
    • /
    • 2008
  • In this study, a new PM (particulate matter) sampler was developed and fabricated to collect fine particles in the atmosphere, and laboratory and field tests were carried out to evaluate the performance of the sampler. The PM sampler, which was based on impingers, employed an aerosol condensation system as a PM magnifier to improve its collection efficiencies. Sodium chloride, ammonium sulfate and ammonium nitrate aerosols were used as test particles, because these components are rich in ambient aerosols. As a result, it was found that the collection efficiency of the novel PM sampler was very high. Thus, it is believed that the PM sampler is an effective device for sampling fine particles. In addition, it was demonstrated that this work could contribute to the collection or removal of fine particles and be applied to the semicontinuous sampling of ambient aerosols for chemical composition analysis.

서울시 대기중 입자상 오염물질의 조성에 관한 연구 (Ionic composition of aerosol particles under urban atmospheres of Seoul, Korea)

  • 한진석;김신도
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.389-398
    • /
    • 1996
  • In order to understand the relative importance of various pathways leading to the production and transformation of aerosols under different atmospheric conditions, the behavior of atmospheric aerosols have been investigated using a high volume tape sample in Seoul for a week period during August 1990. The concentrations of anion $(SO^{2-}_4, NO^-_3, CI^-)$ and cation $(Ca^{2+}, Na^+, NH^+_4)$ species of aerosol samples were analyzed to identify the ionic composition of aerosols and to estimate their relative contributions to aerosol formation. The concentrations of aerosol species were calculated by a multiple regression model. The results of our calculations indicate the existence of various chemical species such as $(NH_4)_2SO_4, Na_2SO_4, CaSO_4, NH_4NO_3, NaNO_3, Ca(NO_3)_2, NH_4Cl$, and NaCl salts. According to our calculations, the most dominant species of aerosol was $(NH_4)_2SO_4$ with the mean concentration of 23.3 $/mu g/m^3$ (66.9%). The proportion of different componts with aerosol (e.g., $NH_4NO_3$ and $NH_4Cl$) was strongly affected by temperature, relative humidity, and partial presure of gases.

  • PDF

초음파 분무 열분해법에 의한 ZnO 합성의 이론과 실제 (Theory and practice of synthesized ZnO powders by ultrasonic spray pyrolysis method)

  • 서수형;신건철
    • 한국결정성장학회지
    • /
    • 제5권1호
    • /
    • pp.60-66
    • /
    • 1995
  • 초음파 분무기에 의해 분무된 질산아연 염($Zn(NO_3)_2$) 용액(0.5M)의 에어로졸 거동과 분포에 대한 실제 실험 결과는 computer simulation 결과와 일치하였다. 즉, 반응관(thermophoresis)에 의해 반응관 중심부로 이동하였다. 또한 에어로졸의 농도 분포는 축길이가 증가함에 따라 반응관 중심쪽에 높았다. 합성된 ZnO 입자 중에서 반응과 중심에서는 볼 수 없었던 깨진 형태의 shell-like aggregates가 반응관 벽근처에서 관찰되었으며, 입자의 크기는 반응관 벽쪽($ 1.2 {\mu\textrm{m}$)이 중심쪽($0.9 {\mu\textrm{m}$)보다 컸다.

  • PDF

Validation of the correlation-based aerosol model in the ISFRA sodium-cooled fast reactor safety analysis code

  • Yoon, Churl;Kim, Sung Il;Lee, Sung Jin;Kang, Seok Hun;Paik, Chan Y.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3966-3978
    • /
    • 2021
  • ISFRA (Integrated SFR Analysis Program for PSA) computer program has been developed for simulating the response of the PGSFR pool design with metal fuel during a severe accident. This paper describes validation of the ISFRA aerosol model against the Aerosol Behavior Code Validation and Evaluation (ABCOVE) experiments undertaken in 1980s for radionuclide transport within a SFR containment. ABCOVE AB5, AB6, and AB7 tests are simulated using the ISFRA aerosol model and the results are compared against the measured data as well as with the simulation results of the MELCOR severe accident code. It is revealed that the ISFRA prediction of single-component aerosols inside a vessel (AB5) is in good agreement with the experimental data as well as with the results of the aerosol model in MELCOR. Moreover, the ISFRA aerosol model can predict the "washout" phenomenon due to the interaction between two aerosol species (AB6) and two-component aerosols without strong mutual interference (AB7). Based on the theory review of the aerosol correlation technique, it is concluded that the ISFRA aerosol model can provide fast, stable calculations with reasonable accuracy for most of the cases unless the aerosol size distribution is strongly deformed from log-normal distribution.

서울의 일차탄소성분 입자 농도 변화 및 관리 방향 (Trend and policy directions of primary carbonaceous aerosols in Seoul)

  • 최은락;이지이;김용표
    • 한국입자에어로졸학회지
    • /
    • 제20권1호
    • /
    • pp.13-24
    • /
    • 2024
  • The concentrations of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC) in particulate matter, typical primary aerosols have decreased in Seoul between 2003 and 2018 (80% for PAHs and 85% for EC). The yearly mean benzo[a]pyrene (BaP) concentration has been lower than 1 ng/m3 since 2010-2011, the target value set by the European Union (EU) and China. A series of policies related to solid fuel and vehicle in South Korea and China should be effective in the reduction of the ambient PAHs and EC concentrations. But the emission data of PAHs and EC at both countries did not support that hypothesis. Possible causes are uncertainties in the emission inventories of primary carbonaceous aerosols in South Korea and China, although there may be a minor effect of the emissions from North Korea on the concentrations in Seoul. Thus the further policy directions against PAHs and EC such as improvements of emissions inventories and measurements, intensive regulation of non-road mobile sources and control of PAHs derivatives are discussed.

개별입자 분석을 위한 대기에어로졸의 시료채취법 (Sampling Method for Individual Particle Analysis of Atmospheric Aerosol)

  • 천성우;박정호
    • 한국환경과학회지
    • /
    • 제33권2호
    • /
    • pp.113-119
    • /
    • 2024
  • In this study, the most suitable sampling methods for the bimodal mass distribution characteristics and individual particle analysis of atmospheric aerosols were investigated. Samples collected in Quartz, Teflon, and Nuclepore filters were analyzed for individual particles using scanning electron microscopy with an energy-dispersive X-ray spectrometer (SEM/EDS). Then, the pore diameter of the filter and the collection flow rate were determined using the theoretical collection efficiency calculation formula for two-stage separation sample collection of coarse and fine particles. The Nuclepore filter was found to be the most suitable filter for identifying the physical and chemical characteristics of atmospheric aerosols since it was able to separate the sample and count the different sized particles better than either Quartz or Teflon. Nuclepore filters with 8.0 ㎛ and 0.4 ㎛ pores were connected in series and exposed to a flow rate of 16.7 L/min for two-stage separation sampling. The results show that it is possible to separate and collect both coarse and fine particles. We expect that the proposed methodology will be used for future individual particle analysis of atmospheric aerosols and related research.

Chemical and Absorption Characteristics of Water-soluble Organic Carbon and Humic-like Substances in Size-segregated Particles from Biomass Burning Emissions

  • Yu, Jaemyeong;Yu, Geun-Hye;Park, Seungshik;Bae, Min-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권2호
    • /
    • pp.96-106
    • /
    • 2017
  • In this study, measurements of size-segregated particulate matter (PM) emitted from the combustion of rice straw, pine needles, and sesame stem were conducted in a laboratory chamber. The collected samples were used to analyze amounts of organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and ionic species. The light absorption properties of size-resolved water extracts were measured using ultraviolet-visible spectroscopy. A solid-phase extraction method was first used to separate the size-resolved HULIS fraction, which was then quantified by a total organic carbon analyzer. The results show that regardless of particle cut sizes, the contributions of size-resolved HULIS ($=1.94{\times}HULIS-C$) to PM size fractions ($PM_{0.32}$, $PM_{0.55}$, $PM_{1.0}$, and $PM_{1.8}$) were similar, accounting for 25.2-27.6, 15.2-22.4 and 28.2-28.7% for rice straw, pine needle, and sesame stem smoke samples, respectively. The $PM_{1.8}$ fraction revealed WSOC/OC and HULIS-C/WSOC ratios of 0.51 and 0.60, 0.44 and 0.40, and 0.50 and 0.60 for the rice straw, pine needle, and sesame stem burning emissions, respectively. Strong absorption with decreasing wavelength was found by the water extracts from size-resolved biomass burning aerosols. The absorption ${\AA}ngstr{\ddot{o}}m $ exponent values of the size-resolved water extracts fitted between 300 and 400 nm wavelengths for particle sizes of $0.32-1.0{\mu}m$ were 6.6-7.7 for the rice straw burning samples, and 7.5-8.0 for the sesame stem burning samples. The average mass absorption efficiencies of size-resolved WSOC and HULIS-C at 365 nm were 1.09 (range: 0.89-1.61) and 1.82 (range: 1.33-2.06) $m^2/g{\cdot}C$ for rice straw smoke aerosols, and 1.13 (range: 0.85-1.52) and 1.83 (range: 1.44-2.05) $m^2/g{\cdot}C$ for sesame stem smoke aerosols, respectively. The light absorption of size-resolved water extracts measured at 365 nm showed strong correlations with WSOC and HULIS-C concentrations ($R^2=0.89-0.93$), indicating significant contribution of HULIS component from biomass burning emissions to the light absorption of ambient aerosols.