• Title/Summary/Keyword: aerosols

Search Result 583, Processing Time 0.041 seconds

Persulfate Wet Oxidation Method for the Determination of Total Phosphorus in Atmospheric Aerosols and Its Application for a Year-round Observation in Beijing

  • Okuda, Tomoaki;Gunji, Yuma;He, Kebin;Ma, Yongliang
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.169-175
    • /
    • 2013
  • Measurement of the phosphorus concentration in aerosols in Beijing, which was a representative East Asian mega-city, was carried out. The optimum procedure for analyzing phosphorus in aerosols was found in this study. Recovery of phosphorus in environmental samples through the improved method was almost 100%. The concentration of phosphorus in TSP was $145{\pm}47\;ng/m^3$, with a seasonal variation showing high concentrations in winter and low concentrations in summer. The concentrations of phosphorus in $PM_{2.5}$ accounted for $35{\pm}6%$ of those in TSP, with no seasonal variations. The major source of phosphorus in aerosols in Beijing was soil dust, and additional sources of phosphorus in fine particles could be coal combustion and biomass burning.

A comparative study of the ionic composition of aerosols from the North Sea and a North Sea coastal area

  • Lee, Jong-Min;Schrems, Otto
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.47-48
    • /
    • 2001
  • It is well known that atmospheric aerosols play an important role in the radiation balance of the earth and meteorological processes as well as in atmospheric chemistry. Aerosols may origin from both natural and/or anthropogenic sources. Thus, the chemical composition of aerosols can vary considerably. For example, the chemical composition of marine aerosol has been the subject of a considerable number of investigations, including the evaluation of long-range transport of anthropogenic constituents on the chemistry of the remote marine boundary layer. (omitted)

  • PDF

An Experimental Study on Transient Behavior of Granular Aerosol Filtration : Effect of Particle Deposition on Pressure Drop (입자층 에어로졸여과의 과도거동에 관한 실험연구 : 압력강하에 대한 입자 퇴적의 영향)

  • 정용원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.3
    • /
    • pp.193-205
    • /
    • 1997
  • Experiments on granular filtration of polydispersed aerosols were conducted to determine the changes in pressure drop necessary to maintain a given gas flow rate as filter becomes clogged with deposited particles. Among the various variables which affect the increase in the pressure drop during the filtration, the most important one was found to be the size of the deposited aerosol particles. It was shown that for a given extent of the total deposition, the extent of increase in pressure drop increases with the decrease of the deposited aerosol size. For the general case where the deposited particles have different sizes, a procedure was proposed for correlating and predicting experimental results on pressure drop. This procedure was found applicable to bidispersed aerosols and polydispersed aerosols.

  • PDF

Critical Review on Evaporative Loss of Semivolatile Aerosols during Sampling

  • Kim, Seung-Won
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.171-181
    • /
    • 2010
  • Semivolatile aerosols exist as vapor and particles at the same time in room temperature and each phase has different intake and uptake mechanisms. This characteristic requires substantial consideration during exposure assessment of semivolatile aerosol. Some sampling methods for solid particles pose high possibility of evaporative loss during sampling. Therefore, when establishing sampling strategy for them, the factors affecting the phase distribution of semivolatile aerosol should be counted including semivolatile aerosol of interest and sampling methods used. Evaluation for phase distributions of semivolatile aerosols is also recommended. Metalworking fluids, pesticides, asphalt fumes, diesel exhaust, and environmental tobacco smoke are common health-related semivolatile aerosols in workplaces.

Control Methods for Aerosols and Airborne Spreading Theory of SARS-CoV-2 (사스-코로나바이러스-2 공기 중 부유 전파이론과 에어로졸 제어기술)

  • Lee, Byung Uk
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.123-130
    • /
    • 2021
  • Objectives: Control methods against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosols have been introduced. Airborne spreading theories for SARS-CoV-2 were analyzed in this study. Methods: Control methods for airborne microorganisms were discussed. Studies on theoretical estimations for airborne spreading of SARS-CoV-2 were presented and analyzed. Analytic calculations were conducted for explaining control techniques for airborne microorganisms. Results: Control methods for SARS-CoV-2 aerosols can include physical or biological procedures. Characterization of SARS-CoV-2 aerosols and massive clustering infection cases of COVID-19 support the airborne spreading theories of SARS-CoV-2. It is necessary to consider the disadvantages of control methods for airborne microorganisms. Conclusions: A study on control methods against bioaerosols is necessary to prevent the spreading of viruses. Airborne spreading theories of SARS-CoV-2 were supported by the current evidence, but further studies are needed to confirm these theories.

Analysis of Organic Molecular Markers in Atmospheric Fine Particulate Matter: Understanding the Impact of "Unknown" Point Sources on Chemical Mass Balance Models

  • Bae, Min-Suk;Schauer, James J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.219-236
    • /
    • 2009
  • Particle-phase organic tracers (molecular markers) have been shown to be an effective method to assess and quantify the impact of sources of carbonaceous aerosols. These molecular markers have been used in chemical mass balance (CMB) models to apportion primary sources of organic aerosols in regions where the major organic aerosol source categories have been identified. As in the case of all CMB models, all important sources of the tracer compounds must be included in a Molecular Marker CMB (MM-CMB) model or the MMCMB model can be subject to biases. To this end, the application of the MM-CMB models to locations where reasonably accurate emissions inventory of organic aerosols are not available, should be performed with extreme caution. Of great concern is the potential presence of industrial point sources that emit carbonaceous aerosols and have not been well characterized or inventoried. The current study demonstrates that emissions from industrial point sources in the St. Louis, Missouri area can greatly bias molecular marker CMB models if their emissions are not correctly addressed. At a sampling site in the greater St. Louis Area, carbonaceous aerosols from industrial point sources were found to be important source of carbonaceous aerosols during specific time periods in addition to common urban sources (i.e. mobile sources, wood burning, and road dust). Since source profiles for these industrial sources have not been properly characterized, method to identify time periods when point sources are impacting a sampling site, needs to avoid obtaining biases source apportionment results. The use of real time air pollution measurements, along with molecular marker measurements, as a screening tool to identify when point sources are impacting a receptor site is presented.

Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan (서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화)

  • Lee, S.;Ghim, Y.S.;Kim, S.W.;Yoon, S.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.470-482
    • /
    • 2008
  • Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan were investigated using the ground-based aerosol measurements and an optical model calculation. The mass fraction of elemental carbon was $8{\sim}17%$, but its contribution on light absorption was high up to $29{\sim}48%$ in Seoul. In Gosan, the contribution of water soluble aerosols on aerosol extinction was $83{\sim}94%$ due to the high mass fraction of these particles in the range of $56{\sim}88%$. Model calculation showed that the water holding capacity of aerosols was larger in Gosan than in Seoul because of higher relative humidity and temperature along with abundant water soluble aerosols. Difference between measured and calculated aerosol optical depths was the highest in summer. This was because aerosol optical depth calculated from ground-based measurements could not consider aerosol loadings at high altitude in spite of high column-integrated aerosol loadings observed by Sun photometer. Although hygroscopic growth was expected to be dominant in summer, the mass concentration of water soluble aerosols was too low to permit this growth.

Radiative Properties of Greenhouse Gases, Aerosols and Clouds in Korea

  • Moon, Yun-Seob;Bang, So-Young;Oh, Sung-Nam
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • We analyzed radiative properties of aerosols, $CO^{2}$ and clouds using Optical Properties of Aerosols and Clouds(OPAC) and the Column Radiation Model (CRM). From OPAC, if the soot component is disregarded, dust-like components depict the highest extinction values in the solar spectral range and the lowest. single scattering albedoes, which are attributable to the presence of large particles. In the dust aerosol, the high absorptivity in the infrared may induce a warming of the lower atmospheric layer in the nighttime. The radiative properties of aerosols, clouds and double $CO^{2}$ using the CRM model at Seoul (37N, 127.4 E) on 3 April 2003 were calculated. The solar zenith angle is 65˚ and the surface albedo is 0.1836 during the clear day. The aerosol optical depth change 0.14 to 1.7, which is derived during Asian dust days in Korea. At this time, abedo by aerosols is considered as 0.3. In cloudy condition, the short wave cloud forcing on both the TOA and the surface is -193.89 $Wm^{-2}$ and -195.03 $Wm^{-2}$, respectively, and the long wave cloud forcing is 19.58 $Wm^{-2}$ and 62.08 $Wm^{-2}$, respectively. As a result, the net radiative cloud forcing is -174.31 $Wm^{-2}$ and -132.95 $Wm^{-2}$, respectively. We calculate also radiative heating rates by double $CO^{2}$ during the clear day. The $CO^{2}$ volumn mixing ratio is 3.55E-4.

  • PDF

Chemical Composition of Post-Harvest Biomass Burning Aerosols in Gwangju, Korea

  • Kim, Young-J.;Ryu, Seong-Y.;Kang, Gong-U.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.79-84
    • /
    • 2003
  • The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural area in Korea. 12-hr integrated intensive sampling of $PM_{10}$ and $PM_{2.5}$ biomass burning aerosols had been conducted continuously at Gwangju, Korea 4-15 June 2001 and 8 October-14 November 2002. The fine and coarse particles of biomass burning aerosols were collected for mass, ionic, elemental, and carbonaceous species analysis. Average fine and coarse mass concentrations of biomass burning aerosols were measured to be 129.6, 24.2 ${{\mu}gm}^{-3}$ in June 2001 and 47.1, 33.2 ${{\mu}gm}^{-3}$ in October to November 2002, respectively. Exceptionally high level of $PM_{2.5}$ concentration up to 157.8 ${{\mu}gm}^{-3}$ well above 24-hour standard was observed during the biomass burning event days under stagnant atmosphere condition. During biomass burning periods dominant ionic species were $Cl^{-}$, ${NO_3}^{-}$, ${SO_4}^{2-}$, and ${NH_4}^{+}$ in fine and coarse mode. In the fine mode $Cl^{-}$ and ${KCl}^{+}$ were unusually rich due to the high content of the semiarid vegetation. High OC values and OC/EC ratios were also measured during the biomass burning periods. Increased amount of fine aerosols with high enrichment, which were originated from biomass burning of post-harvest agricultural waste, resulted in extremely severe particulate air pollution and visibility degradation in the region. Particulate matters from open field burning of agricultural wastes cause great adverse impact on local air quality and regional climate.

  • PDF

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.