• Title/Summary/Keyword: aerosol sampling

Search Result 117, Processing Time 0.023 seconds

Sampling Method for Individual Particle Analysis of Atmospheric Aerosol (개별입자 분석을 위한 대기에어로졸의 시료채취법)

  • Seong-Woo Cheon;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.113-119
    • /
    • 2024
  • In this study, the most suitable sampling methods for the bimodal mass distribution characteristics and individual particle analysis of atmospheric aerosols were investigated. Samples collected in Quartz, Teflon, and Nuclepore filters were analyzed for individual particles using scanning electron microscopy with an energy-dispersive X-ray spectrometer (SEM/EDS). Then, the pore diameter of the filter and the collection flow rate were determined using the theoretical collection efficiency calculation formula for two-stage separation sample collection of coarse and fine particles. The Nuclepore filter was found to be the most suitable filter for identifying the physical and chemical characteristics of atmospheric aerosols since it was able to separate the sample and count the different sized particles better than either Quartz or Teflon. Nuclepore filters with 8.0 ㎛ and 0.4 ㎛ pores were connected in series and exposed to a flow rate of 16.7 L/min for two-stage separation sampling. The results show that it is possible to separate and collect both coarse and fine particles. We expect that the proposed methodology will be used for future individual particle analysis of atmospheric aerosols and related research.

Characteristics of Aerosol Size Distribution from OPC Measurement in Seoul, 2001 (OPC(광학적 입자 계수기)로 측정한 2001년 서울지역 에어로졸의 입경 분포)

  • 정창훈;전영신;최병철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.515-528
    • /
    • 2003
  • The characteristics of one year observation aerosol data in Seoul, 200 I was studied using an OPC (Optical Particle Counter). The size resolved aerosol number concentrations of 0.3 ∼ 25 11m were measured. The results were compared with PM$_{10}$ mass concentration data under various meteorological conditions including dust and precipitation events. For fine particles whose diameter is less than 2.23 ${\mu}{\textrm}{m}$, the number concentration increases in the early morning which is considered due to transportation. while the coarse mode particles increase during daytime. This increase can be explained as local sources and human activities near sampling site. Hourly averaged data show that there exists diurnal variation. Generally, PM$_{10}$ data showed a similar tendency with OPC data. The size resolved OPC data showed that the particles of 0.5 ∼ 3.67 ${\mu}{\textrm}{m}$ are positively correlated with PM$_{10}$ data. The accumulated volume fraction of size resolved aerosol concentration in 0.5 ∼ 10 ${\mu}{\textrm}{m}$ showed that 0.5 ∼ 2.23 ${\mu}{\textrm}{m}$ particles occupied 59.2% of total aerosol volume of 0.5 ∼ 10 ${\mu}{\textrm}{m}$./TEX>.

Development of a Miniature Aerosol Separator for a Black Carbon Measuring Instrument (블랙카본 측정기용 초소형 사이클론 집진기 개발)

  • An, Ik-Hyun;Lim, Jun-Hyung;Lee, Hyo-Young;Yook, Se-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.42-48
    • /
    • 2020
  • Given the increasing interest in air pollution, several technologies to measure black carbon (BC) aerosol particles have been developed. As most BC aerosol particles are smaller than 1 ㎛, it is necessary to pre-separate the particles by size before a BC measuring instrument samples the aerosol particles. In this study, a miniature cyclone separator for portable BC measuring instruments was developed. A numerical approach was used to design the miniature cyclone separator with operating flow rates of 50, 100, or 150 mLPM, and then a prototype cyclone separator was manufactured for experimental validation. The numerical results of the cut-off size and pressure drop of the miniature cyclone separator agreed well with the experimental data. The cut-off sizes of the miniature cyclone separator were determined to be 2.9, 0.94, and 0.63 ㎛ for operating flow rates of 50, 100, and 150 mLPM, respectively. Thus, the miniature cyclone separator is suitable for use as a sampling inlet for the portable black carbon measuring instrument to sample BC aerosol or PM2.5 aerosol.

Feasibility study of a resistive-type sodium aerosol detector with ZnO nanowires for sodium-cooled fast reactors

  • Jewhan Lee;Da-Young Gam;Ki Ean Nam;Seong J. Cho;Hyungmo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2373-2379
    • /
    • 2023
  • In sodium systems, leakage is one of the safety concerns; it can cause chemical reactions, which may result in fires. There are contact and non-contact types of leak detectors, and the conventional method of non-contact type detection is by gas sampling. Because of the complexity of this method, there has always been a need for a simple gas sensor, and the resistive-type nanostructure ZnO sensor is a promising option with various advantages. In this study, a ZnO sensor was fabricated, and the concept was tested as a leak detector using a dedicated experiment facility. The experiment results showed distinctive changes in resistance with the presence of sodium aerosol under various conditions. Replacing the conventional gas sampling with the ZnO sensors is expected to enable identification of the leakage location if used as a point-wise instrumentation and to greatly reduce the total cost, making the system simple, light, and effective. For further study, more tests will be performed to evaluate the sensitivity of key parameters under various conditions.

Aerosol Filtration/Sampling Device Based on Irrigated Rotating Wires

  • M. J. Shaw;M. R. Kuhlman;;J. A. Gieseke
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.265-267
    • /
    • 2000
  • The objective of this study is to analyze, design and evaluate a new gas cleanup or sampling system that will remove erosive, corrosive, and fouling contaminants present in an effluent stream as either solid or liquid particles providing a clean gas stream. The gas clean-up or sampling system considered in this study is an irrigated, rotating element device. The device consists of a central disk-like hub from which emanate radially wires or cylindrical elements. (omitted)

  • PDF

Design and Performance Evaluation using Computational Fluid Dynamics (CFD) Analysis of Wetcyclones for the Collection of Airborne Bacteria (공기 중 박테리아 포집을 위한 습식 사이클론의 CFD 해석을 이용한 설계 및 성능 평가)

  • Hyun Sik Ko;Jungwoo Park;Jiwoo Jung;Jungho Hwang
    • Particle and aerosol research
    • /
    • v.19 no.3
    • /
    • pp.77-87
    • /
    • 2023
  • We present the development of a wetcyclone sampler designed for the sampling of airborne bacteria. The wetcyclone design involves a combination of two traditional cyclone shapes and computational fluid dynamics (CFD) analysis to validate its effectiveness in terms of pressure drop and collection efficiency. The wetcyclone exhibits a collection efficiency of over 90% for bacteria, specifically targeting Staphylococcus aureus. Additionally, the wetcyclone enables continuous bioaerosol sampling using a liquid medium (deionized water), demonstrating a concentration ratio exceeding >105 and a stable microbial recovery rate of 81.9%. The application of real-time quantitative polymerase chain reaction (qPCR) and the colony counting method ensures precise measurement of the concentration ratio and microbial recovery rate.

The Physio-Chemical Characteristics of Aerosol in Urban Area During Snowfall (강설시 도심지역 에어러솔의 물리.화학적 특성)

  • 김민수;이동인;유철환
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • To investigate the physio-chemical components and properties of aerosol particles in urban area sampling of aerosol particles was carried out in the campus of Hokkaido University, Sapporo, Japan, during snowfall. Aerosol particles were collected on millipore filter papers using a low volume air sampler. Their shapes, sizes and chemical components were analyzed by a SEM(Scanning Electron Microscope) and an EDX(Energy Dispersive X-ray). As a results, ice crystals of dendrite and column types were predominantly shown at mature and developing stage of snowfall intensity. The denerite and sector plate types of ice crystals were mainly originated from the sea but column types were come from soil. Scavenging effect by snowfall was greatly also shown at dendrite type ice crystals that embryo was fully developd. Al, Si elements were shown at high frequencies as compared with others. Na, Cl components were especially shown at high frequencies under the sea-breeze wind during snowfall. Anthropogenic aerosol particles had shown with irregular shapes and sizes, relatively. Mainly 3-7$\mu$m aerosol particles were abundant and coarse particles also could be seen during snowfall. Ca, Zn, Fe components mainly caused by spike tires from vehicles in winter season were dominant before snowfall, however the element S mainly caused by human activity was rich after snowfall. The pH values of snow in Sapporo city were higher than those at coastal area. The concentration of chemical components in aerosol particles was also affected by surface winds. Aerosol particles in urban area, Sapporo were mainly affected by human activities like vehicles and combustion with wind system. And their types were related with snowfall intensity.

  • PDF

PIXE Analysis for Elemental Analysis in Aerosol (PIXE 분석법을 이용한 대기분진 중 함유원소 분석)

  • Kim, Duk-Kyung;Choi, Han-Woo;Woo, Hyung-Joo;Kim, Young-Suk;Hong, Wan;Kim, Nak-Bae;Lee, Jin-Hong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.90-97
    • /
    • 1994
  • PIXE( Proton Induced X- ray Emission ) analysis has been applied to the analysis of aerosol for the Purpose of pollution monitoring. Coarse and fine Particle fractions were sampled selectively, using Nuclepore filter in stacked filter units, once a month from February to September in 1993 at urban and rural sites. Concentration of 9 elements, Si, S, K, Ca, Mn, Fe, Cu, Zn and Pb was determined without Pretreatment of Samples. Comparison of data between urban and rural site revealed higher elemental concentration level in urban aerosol. From April to May aerosol sampling was carried out daily to observe the effect of Yellow Sand on the composition of aerosol in the Korean Peninsula. During the Yellow Sand period, Si, Ca, Fe content level in aerosol became more than 5 times higher than normal. The elemental concentration of the aerosol samples of Daejeon City was compared with that of two foreign cities. S and Pb( which are fuel- derived elements) levels in Daejeon City aerosol appeared to be lower than those of foreign cities. And it may be due to the leaded-fuel restriction policy of Korean government since 1987.

  • PDF

Assessment of Bacterial and Fungal Aerosols in the Kitchens of Restaurants (일부 음식점 주방의 부유세균 및 부유진균 조사연구)

  • Kim, Jong-Gyu;Park, Jeong-Yeong;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Objectives: The purpose of this study was to determine airborne bioaerosols such as bacteria and fungi in the kitchens of restaurants, and to assess the effects of thermal factors on the levels of the bioaerosols. Methods: Air samples were taken from kitchens of nine restaurants. An Anderson type air sampler was used for sampling and measurements. Petri dishes filled with a microbiological culture medium (trypticase soy agar for bacteria and Sabouraud dextrose agar for fungi) were used as the sampling surface. Results: The levels of bacterial aerosol measured were $10-10^3CFU/m^3$ and fungal aerosol $10-10^2CFU/m^3$, respectively The mean values of air temperature and relative humidity in the kitchens were $24.6^{\circ}C$ and 46.4%, respectively. Overall, the levels of bacterial aerosol varied by the restaurant type, and fungal aerosol by the business period (p < 0.05). The main effect of air temperature and interaction effect of air temperature and relative humidity onto the bacterial level were significant (p < 0.05), whereas the effects were not significant onto the fungal level. Conclusions: The results indicate a wide variation in the levels of bioaerosols among different kitchens. The observed differences in bioaerosol levels in the kitchens reflect different periods of use. The interactions of air temperature and relative humidity onto the bacterial level suggest that constant attention should be paid to avoid peaks of contamination during the summer season.

Application of Semi-continuous Ambient Aerosol Collection System for Elemental Analysis (대기입자의 원소성분 배출특성연구를 위한 반-연속식 입자채취시스템 적용)

  • Park, Seung-Shik;Ko, Jae-Min;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Aerosol slurry samples were collected in 60-min interval using Korean Semi-continuous Elements in Aerosol Sampler (KSEAS) between May 19 and June 6, 2010 at an urban site of Gwangju. The $PM_{2.5}$ samples were collected with a flow rate of 16.7 L/min and particles are grown by condensation of water vapor in a condenser maintained at ${\sim}5^{\circ}C$ after saturation by direct injection of steam. The resulting droplets are collected in a liquid slurry with a airdroplet separator. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, Se) in the collected slurry samples were determined off-line by ICP-MS. KSEAS sample analysis encompassed the sampling periods for which 24-hr average elemental species concentrations were calculated for comparison with those derived from 24-hr integrated filter samples. Relationship between elemental species measured by two methods indicated high correlation coefficients (r), mostly greater than r of 0.80. However, we note that concentrations of Al, K, Ca, Mn, and Fe, which are often associated with crustal elemental particles, in the KSEAS samples, were substantially lower (1.4~11 times) than those found in the typical filter-based samples. This discrepancy is probably due to difficulties in transferring insoluble dust particles to the collection vials in the KSEAS. Temporal profiles of elemental concentrations indicate that some transient events in their concentrations are observed over the sampling periods. For the elemental species studied, atmospheric concentrations during the transient events increased by factors of 4 in Mn~80 in Zn, compared to their background levels. Principle component analyses were applied to the hourly KSEAS data sets to identify sources affecting the concentrations of the metal constituents observed. In this study, we conclude that hourly measurements for particle-bound elemental constituents were extremely useful for revealing the short-term variability in their concentrations and developing insights into their sources.