• Title/Summary/Keyword: aeroelastic model wind tunnel test

Search Result 30, Processing Time 0.018 seconds

A design method for multi-degree-of-freedom aeroelastic model of super tall buildings

  • Wang, Lei;Zhu, Yong-jie;Wang, Ze-kang;Fan, Yu-hui
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.219-225
    • /
    • 2021
  • Wind tunnel test models for super tall buildings mainly include synchronized pressure models, high-frequency force balance models, forced vibration models and aeroelastic models. Aeroelastic models, especially MDOF aeroelastic models, are relatively accurate, and designing MDOF model is an important step in aero-model wind tunnel tests. In this paper, the authors propose a simple and accurate design method for MDOF model. The purpose of this paper is to make it easier to design MDOF models without unnecessary experimentation, which is of great significance for the use of the aero-model for tall buildings.

Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

  • Sun, Yanguo;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.565-587
    • /
    • 2013
  • Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

Aeroelastic model test of a 610 m-high TV tower with complex shape and structure

  • Ding, Quanshun;Zhu, Ledong
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.361-379
    • /
    • 2017
  • In view of the importance of the wind-structure interaction for tall and slender structures, an aeroelastic model test of the 610m-high TV tower with a complex and unique structural configuration and appearance carried out successfully. The assembled aeroelastic model of the TV tower with complex shape and structure was designed and made to ensure the similarities of the major natural frequencies and the corresponding mode shapes. The simulation of the atmospheric boundary layer with higher turbulent intensity is presented. Since the displacement and acceleration responses at several measurement sections were directly measured in the wind tunnel test, a multi-mode approach was presented to indirectly estimate the displacement and acceleration responses at arbitrary structural floors based on the measured ones. It can be seen that it is remarkable for the displacement and acceleration responses of the TV tower in the two horizontal directions under wind loads and is small for the dynamic response of the torsional displacement and acceleration.

Experimental investigation of vortex-induced aeroelastic effects on a square cylinder in uniform flow

  • Huang, Dongmei;Wu, Teng;He, Shiqing
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.37-54
    • /
    • 2020
  • To investigate the motion-induced aeroelastic effects (or aerodynamic feedback effects) on a square cylinder in uniform flow, a series of wind tunnel tests involving the pressure measurement of a rigid model (RM) and simultaneous measurement of the pressure and vibration of an aeroelastic model (AM) have been systematically carried out. More specifically, the aerodynamic feedback effects on the structural responses, on the mean and root-mean-square wind pressures, on the power spectra and coherence functions of wind pressures at selected locations, and on the aerodynamic forces were investigated. The results indicated the vibration in the lock-in range made the shedding vortex more coherent and better organized, and hence presented unfavorable wind-induced effects on the structure. Whereas the vibration in the non-lock-in range generally showed insignificant effects on the flow structures surrounding the square cylinder.

Wind-rain-induced vibration test and analytical method of high-voltage transmission tower

  • Li, Hong-Nan;Tang, Shun-Yong;Yi, Ting-Hua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.435-453
    • /
    • 2013
  • A new computational approach for the rain load on the transmission tower is presented to obtain the responses of system subjected to the wind and rain combined excitations. First of all, according to the similarity theory, the aeroelastic modeling of high-voltage transmission tower is introduced and two kinds of typical aeroelastic models of transmission towers are manufactured for the wind tunnel tests, which are the antelope horn tower and pole tower. And then, a formula for the pressure time history of rain loads on the tower structure is put forward. The dynamic response analyses and experiments for the two kinds of models are carried out under the wind-induced and wind-rain-induced actions with the uniform and turbulent flow. It has been shown that the results of wind-rain-induced responses are bigger than those of only wind-induced responses and the rain load influence on the transmission tower can't be neglected during the strong rainstorm. The results calculated by the proposed method have a good agreement with those by the wind tunnel test. In addition, the wind-rain-induced responses along and across the wind direction are in the same order of response magnitude of towers.

Wind tunnel test research on aerodynamic means of the ZG Bridge

  • He, Xiangdong;Xi, Shaozhong
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 1999
  • The ZG Bridge(preliminary design), with unfavorable aerodynamic stability characteristics, is a truss-stiffened suspension bridge, its critical wind speed of flutter instability is much lower than that of code requirement, In the present paper, based on both aerostatic and aeroelastic section model wind tunnel test, not only effects of some aerodynamic means on aerodynamic stability of its main girder are investigated, but also such effective aerodynamic means of it as flap and plate-like center stabilizer are concluded.

Experimental study on wind-induced dynamic interference effects between two tall buildings

  • Huang, Peng;Gu, Ming
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.147-161
    • /
    • 2005
  • Two identical tall building models with square cross-sections are experimentally studied in a wind tunnel with high-frequency-force-balance (HFFB) technique to investigate the interference effects on wind loads and dynamic responses of the interfered building. Another wind tunnel test, in which the interfered model is an aeroelastic one, is also carried out to further study the interference effects. The results from the two kinds of tests are compared with each other. Then the influences of turbulence in oncoming wind on dynamic interference factors are analyzed. At last the artificial neural networks method is used to deal with the experimental data and the along-wind and across-wind dynamic interference factor $IF_{dx}$ & $IF_{dy}$ contour maps are obtained, which could be used as references for wind load codes of buildings.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.