• Title/Summary/Keyword: aerodynamic evaluation

Search Result 156, Processing Time 0.022 seconds

Comparison of the basic Aerodynamics between the World Cup Official Ball and Korean Soccer Balls (월드컵 공인구와 한국 축구 공인구 사이의 기초 공력특성 비교)

  • Sungchan Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.63-70
    • /
    • 2024
  • Objective: This study aims to compare the basic aerodynamic characteristics of the official Qatar World Cup soccer ball with those of the official Korean soccer balls. Method: In this study, wind tunnel experiments were conducted to compare the fundamental aerodynamic properties of two commonly used domestic soccer balls, the Star and Nassau, with the Al Rihla, the official ball of the 2022 Qatar World Cup. Results: The findings revealed that the Nassau soccer ball exhibited changes in aerodynamic characteristics depending on its orientation, particularly at low speeds (below 15 m/s), while the Al Rihla showed variations in aerodynamic characteristics at medium to high speeds (15 m/s to 35 m/s) based on its orientation. Furthermore, the results of lift and side force variations indicated that the Star soccer ball exhibited larger changes compared to other soccer balls, suggesting that it may exhibit the most irregular flight path during strong shots (around 30 m/s or approximately 100 km/h). However, there were no differences in aerodynamics observed among the soccer balls in the medium-speed range (20~25 m/s). Conclusion: The comparison of aerodynamics between the Korean soccer balls and the most recently used World Cup official ball showed that, while the Korean balls exhibited slightly greater changes in lift and side forces compared to the World Cup ball, there were no significant differences in most of the aerodynamic characteristics.

Evaluation of Optical Porosity of Thuja occidentalis by Image Analysis and Correlation with Aerodynamic Coefficients (이미지 분석을 통한 서양측백나무의 광학적 공극도 산정 및 공기역학계수와의 상관성 평가)

  • Jang, Dong-hwa;Yang, Ka-Young;Kim, Jong-bok;Kwon, Kyeong-seok;Ha, Taehwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.39-47
    • /
    • 2021
  • Reduction effect of the spread of odorant and fine dust through windbreak trees can be predicted through numerical analysis. However, there is a disadvantage that a large space and destructive experiments must be carried out each time to calculate the aerodynamic coefficient of the tree. In order to overcome these shortcomings, In this study, we aimed to estimate the aerodynamic coefficient (C0, C1, C2) by using image processing. Thuja occidentalis, which can be used as windbreak were used as the material. The leaf area index was estimated from the leaf area ratio using image processing with leaf weight, and the optical porosity was calculated through image processing of photos taken from the side while removing the leaves step-by-step. Correlation analysis was conducted with the aerodynamic coefficient of Thuja occidentalis calculated from the wind tunnel test and leaf area index and optical porosity calculated from the image analysis. The aerodynamic coefficient showed positive and negative correlations with the leaf area index and optical porosity, respectively. The results showed that the possibility of estimating the aerodynamic coefficient using image processing.

Driving safety analysis of various types of vehicles on long-span bridges in crosswinds considering aerodynamic interference

  • Han, Yan;Huang, Jingwen;Cai, C.S.;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.279-297
    • /
    • 2019
  • Strong winds threaten the safety of vehicles on long-span bridges considerably, which could force traffic authorities to reduce speed limits or even close these bridges to traffic. In order to maintain the safe and economic operation of a bridge, a reasonable evaluation of the driving safety on that bridge is needed. This paper aims at carrying outdriving safety analyses for three types of vehicles on a long-span bridge in crosswinds by considering the aerodynamic interference between the bridge and the vehicles based on the wind-vehicle-bridge coupling vibration analysis. Firstly, CFD numerical simulations along with previously obtained wind tunnel testing results were used to determine the aerodynamic force coefficients of the three types of vehicles on the bridge. Secondly, the dynamic responses of the bridge and the vehicles under crosswinds were simulated, and based on those, the driving safety analyses for the three types of vehicles on the bridge were carried out for both cases considering and not considering the aerodynamic interference between the vehicles and the bridge. Finally, the effect of the aerodynamic interference on the safety of the vehicles was investigated. The results show that the aerodynamic interference between the bridge and the vehicles not only affectsthe accident critical wind speed but also the accident type for all three types of vehicles. Such effects are also different for each of the three types of vehicles being studied.

Design of 5kW-class Horizontal Axis Wind Turbine using In-house Code POSEIDON (In-house 코드 POSEIDON을 이용한 5kW급 수평축 풍력발전용 로터 블레이드 형상설계)

  • Kim, Ki-Pyoung;Kim, Ill-Soo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.492-492
    • /
    • 2009
  • Nowadays in Republic of Korea, there is no distinct reference for the related design technology of rotor blade of wind turbine. Therefore the optimum design and evaluation of performance is carried out with foreign commercial code softwares. This paper shows in-house code software that evaluates the aerodynamic design of wind turbine rotor blade using blade element-momentum theory (BEMT) and processes that is applied through various aerodynamics theories such as momentum theory, blade element theory, prandtl's tip loss theory and strip theory. This paper presents the results of the numerical analysis such as distribution of aerodynamic properties and performance curves using in-house code POSEIDON.

  • PDF

Investigation on flutter mechanism of long-span bridges with 2d-3DOF method

  • Yang, Yongxin;Ge, Yaojun;Xiang, Haifan
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.421-435
    • /
    • 2007
  • A two-dimensional flutter analysis method (2d-3DOF method) was developed to simultaneously investigate the relationship between oscillation parameters and aerodynamic derivatives of three degrees of freedom, and to clarify the coupling effects of different degrees of freedom in flutter instability. With this method, the flutter mechanism of two typical bridge deck sections, box girder section and two-isolated-girder section, were numerically investigated, and both differences and common ground in these two typical flutter phenomena are summarized. Then the flutter stabilization effect and its mechanism for long-span bridges with box girders by using central-slotting were studied by experimental investigation of aerodynamic stability and theoretical analysis of stabilizing mechanism. Possible explanation of new findings in the evaluation trend of critical wind speed through central vent width is finally presented.

Evaluation of the Turbulence Models on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan (3차원 소형축류홴의 공력특성에 대한 난류모델평가)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2014
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate turbulent models on the aerodynamic performance of a small-size axial fan(SSAF). The prediction performance on the static pressure of all turbulent models is going downhill at the high static pressure and low flowrate region, but has improved at the axial flow region. In consequence, all turbulent models predict the static pressure coefficient with an error performance less than about 4% after the region of the flowrate coefficient of about 0.14. Especially, the turbulent model of SST $k-{\omega}$ shows the best prediction performance equivalent to an error performance less than about 2% on the static pressure.

Structural Stability Evaluation of Impeller in Resonant condition due to Diffuser vanes (디퓨저 베인에 의한 공진조건에서의 임펠러 구조 안정성 평가)

  • Kim, Yongse;Kong, Dongjae;Shin, Sangjoon;Im, Kangsoo;Park, Kihoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.877-880
    • /
    • 2017
  • Impeller blades in the centrifugal compressor are subjected to static loads due to the high-speed rotation and steady aerodynamic forces. At the same time, aerodynamic excitations by the interaction between the impeller and the diffuser vanes(DV) periodically excite the impeller blades in resonant conditions, which may lead to high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted by performing the unsteady flow analysis and modal analysis using ANSYS. Next, a unidirectional forced vibration analysis was performed by using fluid-structure interaction (FSI) method, and the safety of HCF was evaluated based on the results.

  • PDF

Comparison of mean airflow rate before and after treatment in patients with sulcus vocalis according to aerodynamic analysis methods (성대구증 환자의 공기역학적 검사 방법에 따른 치료 전과 후의 평균호기류율 비교)

  • Seung Yeon Lee;Hong-Shik Choi;Jaeock Kim
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.61-69
    • /
    • 2023
  • Sulcus vocalis is characterized by incomplete closure of the vocal folds, with a high mean airflow rate (MFR) as a distinctive feature. The MFR is measured using two aerodynamic analysis methods [the maximum sustained phonation protocol (MXPH) and voicing efficiency protocol (VOEF)] of the phonatory aerodynamic system (PAS), and the results may vary depending on the method. This study compared the differences in MFR before and after treatment (microsurgery and voice therapy) according to the MXPH and VOEF of the PAS in 30 patients with sulcus vocalis. Additionally, we examined whether there were differences in the subjective voice evaluation (voice handicap index, VHI), perceptual voice evaluation (GRBS), and fundamental frequency (F0) before and after treatment. The results showed significant differences between the two methods, both before and after treatment, in patients with sulcus vocalis. However, there were no significant differences by methods in the changes before and after treatment. The VHI and GRBS scores significantly decreased after treatment; however, F0 showed no significant differences before and after treatment. This study indicates that when evaluating MFR changes in patients with sulcus vocalis, it is acceptable to use either aerodynamic analysis (MXPH or VOEF).

Comparison of Pre and Post-operational Phonatory Aerodynamic Parameters in Vocal Polyp and Vocal Cord Palsy Patients (성대마비 및 성대용종 환자의 수술 전과 후의 공기역학적 변수 비교)

  • Lee, Dahye;Kim, Jaeock;Oh, JaeKoon;Choi, Hong-Shik
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.26 no.2
    • /
    • pp.112-116
    • /
    • 2015
  • Background and Objectives : Aerodynamic analysis is an examination which provides information regarding various vocalization measures indicating laryngeal efficiency. Voice evaluation using such examination must be capable of distinguishing between normal to abnormal voice. It also observes variables on aerodynamic characteristics by gender in regards to patients of vocal disorders, especially of vocal cord paralysis and vocal polyp, and compares the conditions before and after surgery. This paper therefore, seeks to build a framework for establishing standard levels of aerodynamical characteristic on vocal disorders. Subjects and Methods : The study was intended for a total number of 20 patients with vocal polyp or unilateral vocal cord paralysis. Those with the vocal polyp underwent laryngomycroscopy surgery and the vocal cord paralysis, vocal fold injection using Restylane. Aerodynamic analysis fulfilled the Maximum sustained Phonation (MXPH) and Voicing Efficiency (VOEF) by using PAS Model 6600 (KayPENTAX, USA). Results : In MXPH, increase in PHOT were evident with vocal polyp after surgery. As for patients with vocal cord paralysis, MAXDB, MEADB, DHODB, PHOT all have increased and MEAP, PEF, MEAF decreased after surgery. In VOEF, patients with vocal cord paralysis who underwent surgery showed increase in MAXDB, MEADB, DHODB, FET100, ARES, but decreases in PEF, TARF. Conclusion : Overall, it can be concluded that patients with the vocal polyp and vocal cord paralysis seemed to get closer to the normal values after than before surgery in majority of measures. This confirms that the function of their vocal cord has improved nearly to normality through operations.

  • PDF

Study on Design, Manufacturing and Test Evaluation using Composite Materials of Vertical Axis Wind Turbine Blade (수직축 풍력 블레이드의 복합재 적용 설계, 제작 및 시험 평가 연구)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.58-63
    • /
    • 2018
  • This work dealt with the design and manufacturing of composite blades of a vertical axis wind turbine system. In this work, aerodynamic and structural designs of sandwich composite blades for a vertical axis wind turbine system were performed. First, the aerodynamic and structural design requirements of the composite blades were investigated. After the structural design was complete, a structural analysis of the wind turbine blades was performed using the finite element analysis method. It was performed with the stress and displacement analysis at the applied load condition. A design modification for the structurally weak part was proposed as a result of the structural analysis. Through another structural analysis, it was confirmed that the final designed blade structure is safe.