• 제목/요약/키워드: aerodynamic distribution

Search Result 284, Processing Time 0.024 seconds

A Design of the Spray-Freeze Dryer for the Production of pulmonary inhalation Powders (호흡식 분말의약품 제조용 분무동결건조기 설계에 관한 연구)

  • Park, S.J.;Song, C.S.;Han, Y.S.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1323-1328
    • /
    • 2004
  • This paper shows the study on the design of the spray-freeze dryer for the production of the pulmonary inhalation powders. Powder production and handling has been an integral part of pharmaceutical processing because of the wide use of oral dosage forms. There are a few commonly used powder preparation methods including mechanical milling, precipitaion, spray drying, freeze drying, and so on. In general, methods available for preparing inhalation powders are limited due to certain inhalation powder's sensitive nature to the processing environments. This is particularly true for preparing dry powder aerosols where the aerodynamic particle size$(<5{\mu}m)$ and the size distribution are pivotal. Supercritical fluid antisolvent and spray freeze drying have recently emerged as promising techniques for producing powders for use in microcapsulation. However, the aerosol applications of these powders are yet to be explored. The purpose of this study is to test the feasibility of using spray freeze-dried pulmonary inhalation powders for aerosolization.

  • PDF

A Study on the Roughness Length Spatial Distribution in Relation to the Seoul Building Morphology (서울시 건물형태에 따른 거칠기길이 분포특성 연구)

  • Yi, Chaeyeon;Kwon, Tae Heon;Park, Moon-Soo;Choi, Young Jean;An, Seung Man
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.339-351
    • /
    • 2015
  • The purpose of this study is for the fundamental understandings about building morphological parameters and aerodynamic roughness parameters of Seoul, Korea using the detailed urban geographic information datasets. Applied roughness parameter calculations are based on a digital map of buildings with lot area polygons. The quality of the developed roughness length ($z_0$) of Seoul was evaluated with densely installed 107 automatic weather stations. The correlation coefficient results between averaged wind speeds of AWS data and averaged $z_0$ is -0.303 in night and -0.398 in day (200 m radii circles case). Further $z_0$ enhancement should follow by considering other surface features such as high tree and orography of Seoul. However, this study would meet the needs to for local- or meso-scale meteorological modeling applications of Seoul. However, further studies would require for enhancing the $z_0$ applications of Seoul.

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

Emission Characteristics of Nano-sized Particles in Bio-ethanol Fuelled Engine with Different Injection Type (바이오-에탄올연료 및 분사방식에 따른 엔진 나노입자 배출 특성)

  • Lee, Jin-Wook;Patel, Rishin;Ladommatos, Nicos
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.55-62
    • /
    • 2009
  • As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.

Pressure field of a rotating square plate with application to windborne debris

  • Martinez-Vazquez, P.;Kakimpa, B.;Sterling, M.;Baker, C.J.;Quinn, A.D.;Richards, P.J.;Owen, J.S.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.509-529
    • /
    • 2012
  • Traditionally, a quasi steady response concerning the aerodynamic force and moment coefficients acting on a flat plate while 'flying' through the air has been assumed. Such an assumption has enabled the flight paths of windborne debris to be predicted and an indication of its potential damage to be inferred. In order to investigate this assumption in detail, a series of physical and numerical simulations relating to flat plates subject to autorotation has been undertaken. The physical experiments have been carried out using a novel pressure acquisition technique which provides a description of the pressure distribution on a square plate which was allowed to auto-rotate at different speeds by modifying the velocity of the incoming flow. The current work has for the first time, enabled characteristic pressure signals on the surface of an auto-rotating flat plate to be attributed to vortex shedding.

Flutter performance of central-slotted plate at large angles of attack

  • Tang, Haojun;Li, Yongle;Chen, Xinzhong;Shum, K.M.;Liao, Haili
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.447-464
    • /
    • 2017
  • The flutter instability is one of the most important themes need to be carefully investigated in the design of long-span bridges. This study takes the central-slotted ideal thin flat plate as an object, and examines the characteristics of unsteady surface pressures of stationary and vibrating cross sections based on computational fluid dynamics (CFD) simulations. The flutter derivatives are extracted from the surface pressure distribution and the critical flutter wind speed of a long span suspension bridge is then calculated. The influences of angle of attack and the slot ratio on the flutter performance of central-slotted plate are investigated. The results show that the critical flutter wind speed reduces with increase in angle of attack. At lower angles of attack where the plate shows the characteristics of a streamlined cross-section, the existence of central slot can improve the critical flutter wind speed. On the other hand, at larger angles of attack, where the plate becomes a bluff body, the existence of central slot further reduces the flutter performance.

Numerical determination of wind forces acting on structural elements in the shape of a curved pipe

  • Padewska-Jurczak, Agnieszka;Szczepaniak, Piotr;Bulinski, Zbigniew
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • This paper reports the study on development and verification of numerical models and analyzes of flow at high speed around structural elements in the shape of a curved pipe (e.g., a fragment of a water slide). Possibility of engineering estimation of wind forces acting on an object in the shape of a helix is presented, using relationships concerning toroidal and cylindrical elements. Determination of useful engineering parameters (such as aerodynamic forces, pressure distribution, and air velocity field) is presented, impossible to obtain from the existing standard EN 1991-1-4 (the so-called wind standard). For this purpose, flow at high speed around a torus and helix, arranged both near planar surface and high above it, was analyzed. Analyzes begin with the flow around a cylinder. This is the simplest object with a circular cross-section and at the same time the most studied in the literature. Based on this model, more complex models are analyzed: first in the shape of half of a torus, next in the shape of a helix.

Dynamic crosswind fatigue of slender vertical structures

  • Repetto, Maria Pia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.527-542
    • /
    • 2002
  • Wind-excited vibrations of slender structures can induce fatigue damage and cause structural failure without exceeding ultimate limit state. Unfortunately, the growing importance of this problem is coupled with an evident lack of simple calculation criteria. This paper proposes a mathematical method for evaluating the crosswind fatigue of slender vertical structures, which represents the dual formulation of a parallel method that the authors recently developed with regard to alongwind vibrations. It takes into account the probability distribution of the mean wind velocity at the structural site. The aerodynamic crosswind actions on the stationary structure are caused by the vortex shedding and by the lateral turbulence, both schematised by spectral models. The structural response in the small displacement regime is expressed in closed form by considering only the contribution of the first vibration mode. The stress cycle counting is based on a probabilistic method for narrow-band processes and leads to analytical formulae of the stress cycles histogram, of the accumulated damage and of the fatigue life. The extension of this procedure to take into account aeroelastic vibrations due to lock-in is carried out by means of ESDU method. The examples point out the great importance of vortex shedding and especially of lock-in concerning fatigue.

Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan (축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용)

  • Chung, Dong-Gyu;Hong, Soon-Seong;Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF

A Numerical Study on the Cooling Characteristics of Seeker Windows for Selecting Efficient Cooling Method (효율적인 냉각 방식 선정을 위한 탐색창 냉각 특성 해석 연구)

  • Kim, Manshik;Lee, Dong Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.246-254
    • /
    • 2017
  • In this paper, cooling characteristics of seeker windows were examined using the Sinda-Fluint software. Various cooling methods were considered to satisfy the limit temperature of the cooled seeker window which would be exposed to excessive aerodynamic heating conditions by varying coolant type and mass flow rate of coolant. Due to the enhanced heat transfer between the coolant and the seeker window, internally cooled seeker window which uses liquid coolant showed lowered temperature distribution in the window compared to internally cooled seeker window which uses gas coolant. External film cooled seeker window also showed good cooling characteristics because it reduces the convective heat flux to the seeker window fundamentally. It was also confirmed that the temperature and the temperature gradient of seeker windows were significantly reduced for the cases which use external film cooling additionally to the gas and liquid cooled seeker window.