• 제목/요약/키워드: aerodynamic distribution

검색결과 288건 처리시간 0.023초

Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning

  • Lee, Min-Ho;Yang, Wonseok;Chae, Nakkyu;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1043-1050
    • /
    • 2020
  • Radioactive aerosols are produced during the cutting of contaminated and activated metals. They must be collected and removed by a high-performing filtration system before releasing to the environment from the decommissioning workplace. The filtration system requires regular replacement to ensure the sufficient removal of radioactive aerosols because its filtration efficiency gradually decreases. This study evaluates the efficiency and lifetime of filters while cutting metals by using a plasma arc cutter. Particularly, this study considers the aerodynamic diameter distribution of number and mass concentrations for aerosols from 6 nm to 10 ㎛ when evaluating the performance of filters. After 20 time reuses for cutting operation performed in a cutting chamber, the removal efficiency is reduced from over 99 to below 93% at 2 ㎛. The results are used to analyze the lifetime of filters, the frequencies of their replacements, and impact on internal radiation dose.

Aerodynamics of tapered and set-back buildings using Detached-eddy simulation

  • Sharma, Ashutosh;Mittal, Hemant;Gairola, Ajay
    • Wind and Structures
    • /
    • 제29권2호
    • /
    • pp.111-127
    • /
    • 2019
  • The tapered and set-back type of unconventional designs have been used earlier in many buildings. These shapes are aerodynamically efficient and offer a significant amount of damping against wind-induced forces and excitations. Various studies have been conducted on these shapes earlier. The present study adopts a hybrid approach of turbulence modelling i.e., Detached-eddy Simulation (DES) to investigate the effect of height modified tapered and set-back buildings on aerodynamic forces and their sensitivity towards pressure. The modifications in the flow field around the building models are also investigated and discussed. Three tapering ratios (T.R.=(Bottom width- Top width)/Height) i.e., 5%, 10%, 15% are considered for tapered and set-back buildings. The results show that, mean and RMS along-wind and across-wind forces are reduced significantly for the aerodynamically modified buildings. The extent of reduction in the forces increases as the taper ratio is increased, however, the set-back modifications are more worthwhile than tapered showing greater reduction in the forces. The pressure distribution on the surfaces of the buildings are analyzed and in the last section, the influence of the flow field on the forces is discussed.

Influence of geometrical parameters of reentry capsules on flow characteristics at Mach 6

  • R.C. Mehta
    • Advances in aircraft and spacecraft science
    • /
    • 제11권2호
    • /
    • pp.177-194
    • /
    • 2024
  • The objective of this paper is to compute entire flow field over Apollo-II, Aerospace Reentry Demonstrator (ARD), Orbital Experiment (OREX) with sharp shoulder and rounded shape shoulder and Space Recovery Experiment (SRE) at different flare-cone half-angle of 20° and 35°. This paper addresses numerical solutions of the compressible three-dimensional Euler equations on hexahedral meshes for a freestream Mach 6 and at an angle of incidence 5°. Furthermore, spatial discretization is accomplished by a cell centred finite volume formulation solution and advanced in time by an explicit multi-stage Runge-Kutta method. The flow field characteristics, distribution of surface pressure coefficient and Mach number on fore-body and aft-body are presented as a function of the geometrical parameters of many reentry capsules. The surface pressure variation is numerically integrated to obtain the aerodynamic drag and compared well with impact theory. The present numerical study has observed the significant dependence of the blunt body and the aft-body geometry of the vehicle and can be used to study atmospheric conditions during re-entry trajectory. The numerical analysis reveals the significant influence of capsule geometry on the flow characteristics of the mechanism of upstream and structure of the flow near the wake region and aerodynamic drag coefficient.

Evaluation of wind loads and the potential of Turkey's south west region by using log-normal and gamma distributions

  • Ozkan, Ramazan;Sen, Faruk;Balli, Serkan
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.299-309
    • /
    • 2020
  • In this study, wind data such as speeds, loads and potential of Muğla which is located in the southwest of Turkey were statistically analyzed. The wind data which consists of hourly wind speed between 2010 and 2013 years, was measured at the 10-meters height in four different ground stations (Datça, Fethiye, Marmaris, Köyceğiz). These stations are operated by The Turkish State Meteorological Service (T.S.M.S). Furthermore, wind data was analyzed by using Log-Normal and Gamma distributions, since these distributions fit better than Weibull, Normal, Exponential and Logistic distributions. Root Mean Squared Error (RMSE) and the coefficients of the goodness of fit (R2) were also determined by using statistical analysis. According to the results, extreme wind speed in the research area was 33 m/s at the Datça station. The effective wind load at this speed is 0.68 kN/㎡. The highest mean power densities for Datça, Fethiye, Marmaris and Köyceğiz were found to be 46.2, 1.6, 6.5 and 2.2 W/㎡, respectively. Also, although Log-normal distribution exhibited a good performance i.e., lower AD (Anderson - Darling statistic (AD) values) values, Gamma distribution was found more suitable in the estimation of wind speed and power of the region.

2001년 겨울철 서울 대기 에어로졸의 입경별 수 농도 특성 (Characteristics of Urban Aerosol Number Size Distribution in Seoul during the Winter Season of 2001)

  • 배귀남;김민철;임득용;문길주;백남준
    • 한국대기환경학회지
    • /
    • 제19권2호
    • /
    • pp.167-177
    • /
    • 2003
  • The number size distribution of urban aerosols ranging from 0.02 to 20 ${\mu}{\textrm}{m}$ in diameter was measured by using a scanning mobility particle sizer (SMPS) system and an aerodynamic particle sizer spectrometer (APS) at Seoul from November 30,2001 to January 14, 2002. The gaseous species such as CO, NO, NO$_2$, and $O_3$ were also continuously monitored. The daily average concentration of urban aerosols sorted into three groups (0.02~0.1 ${\mu}{\textrm}{m}$, 0.1~1 ${\mu}{\textrm}{m}$ and 1~10 ${\mu}{\textrm}{m}$) and the typical number, surface, and volume distributions of urban aerosols were discussed in this paper. The weekly variation of aerosol concentration was compared with those of gaseous concentrations. relative humidity, and visibility. The results showed that the particle number concentration seemed to increase in the morning and the number concentration of fine particles less than 1 fm in diameter seemed to increase when the concentrations of CO, NO, and NO$_2$ were high. The number concentration of fine particles was relatively high when the relative humidity was greater than 70% during the increasing period of relative humidity. The visibility was weakly correlated with the concentration of aerosols ranging 0.1 to 1 ${\mu}{\textrm}{m}$, and the number size distribution for high visibility episode was apparently different from that for low visibility episode.

Effect of Blade Leading Edge Sweep on the Performance of a High Pressure Centrifugal Compressor Impeller

  • Wang, Hongliang;Xi, Guang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.823-827
    • /
    • 2008
  • The effects of blade leading edge sweep on both the aerodynamic performance and the structure stress of a high pressure centrifugal compressor impeller are numerically investigated. Changes in the flow structure occur as a result of the effect of leading edge sweep on the loading distribution in the tip region. The flow separation is avoided by introducing a sweep of the main blade leading edge and the strength of shock is reduced at the same time. Backswept of the leading edge is found to be beneficial to the impeller performance improving. On the other hand, the structural analysis indicated that high rotating speed of the impeller will cause substantial high bending stresses and radial deflections of the blade. Studies have shown that it is possible to control the stress distribution along the tip and root of the blade by slight adjustments to the sweep angle of the leading edge. These adjustments may be used to design the impeller with lower blade root stress distribution without aerodynamics performance penalty.

  • PDF

공기 냉각 시스템의 홴 소음 예측 기법 (Fan Noise Prediction Method of Air Cooling System)

  • 이찬;길현권
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

운전점에 따른 3차원 소형축류홴의 와도 특성에 대한 대규모 와 모사 (Large Eddy Simulation on the Vorticity Characteristics of Three-Dimensional Small-Size Axial Fan with Different Operating Points)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제20권6호
    • /
    • pp.64-70
    • /
    • 2016
  • The unsteady-state, incompressible and three-dimensional large-eddy simulation(LES) was carried out to evaluate the vorticity distribution of a small-size axial fan(SSAF). The X-component vorticity profiles developed around blade tips turn from axial to radial, and diminish the density of distribution according to the increase of static pressure. Otherwise, the Z-component vorticity profiles evenly develop at the region larger than the half radial distance of blade at the operating points of A and B, partly at the trailing-edge region of blade and radially over bellmouth according to the increase of static pressure.

An Experimental Study for Noise Reduction of the Cross-Flow Fan of the Room Air-Conditioners

  • Koo, Hyoung-Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.89-100
    • /
    • 2000
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectra of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed, which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared with and without the bounding fence for various flow rates.

  • PDF

에어컨용 직교류홴의 저소음화를 위한 실험적 연구 (An experimental study for noise reduction of the cross-flow fan of the room air-conditioners)

  • 구형모
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.871-879
    • /
    • 1999
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectrums of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared of the experimental rig with and without the bounding fence for various flow rates.

  • PDF