• Title/Summary/Keyword: aerobic landfill operation

Search Result 4, Processing Time 0.015 seconds

Looking back on Waste Land Fill (쓰레기 매립처분의 재검토)

  • Kim Kyong Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.3 no.2 s.5
    • /
    • pp.79-90
    • /
    • 1988
  • Untill to-day the disposal of municipal refuse in Korea is entirely depending on dumping the refuse into concave land except a few case that bring about the secondary pollution by generating insects, offensive odour and the dust blow which cause adverse effects to dwelling community in the vicinity. It is widely recognized since Korea is ready to be advanced nation must be carried out the proper way of refuse disposal as meet with the environmental standard and ready to accept by general public. Refuse disposal that is practiced by world wide is known as sanitary landfill although it bears some what the expensive construction and operation costs rather than the plain dumping. The following statement is the construction of sanitary landfill in brief. When one takes a look at the Unites States which has huge territory normaly carry out the refuse disposal by anaerobic improved landfill method while the country has limitted land is experimenting various types of landfill which bring about the earier reuse of completed landfill site and minimise the secondary pollution. The author of this article consider out of several landfill methods the semi aerobic landfill will be widely applied in Korea in coming day, the following article will elaborate little more about the semi aerobic method.

  • PDF

A field study on early stabilization of waste landfill using air injection and leachate recirculation (공기주입과 침출수 재순환 방법을 이용한 폐기물 매립지 조기안정화에 관한 현장 실험 연구)

  • Yoon, Seok-Pyo;Zhao, Xin;Lee, Nam-Hoon;Jeon, Yeon-Ho;Byun, Young-Deog;Ahn, Young-Mi;Min, Ji-Hong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2010
  • Field study was conducted for 5 months to investigate the effect of leachate recirculation on aerobic landfill stabilization at active landfilling site. The area of field experiment was $24{\times}24m$ and 9 vertical air injection wells with screen ranging 3~9 m were installed. Aerobic landfill operation for 5 months increased average internal landfill temperature to $70^{\circ}C$ and 8 % of landfill height was settled down. $94m^3$ of leachate was recirculated for 1 month to increase moisture content of landfill to favor microbial degradation of organic matter, which resulted in temporary increase of groundwater level and anaerobic environment. But leachate recirculation triggered increase of internal landfill temperature of neighboring monitoring well. Because excessive leachate recirculation decreased internal landfill temperature by cooling effect, internal landfill temperature should be checked to avoid abrupt decrease of temperature during leachate recirculation. Also, to prevent anaerobic environment, intermittent leachate recirculation was recommended.

A Fundermental Study on Stabilization in Municipal Waste Landfill Site (도시폐기물 매립지의 안정화에 관한 기초연구)

  • 김은호;김순호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • The investigation was carried out to analyze the generation and the composition of landfill gas generated from inserted pipe wells into the underground by boring operation and also study the undecomposed waste characteristics by open-cut test at S. waste landfill site in Pusan city. Pilot test was conducted for stabilization. The experimental results from this study were summerized as follows. ; Since COD matter was easuer decomposed than COD matter for continuously biological stabilization in underground, it seemed that BOD and CO $D_{Mn}$ were in the range of 854~4,813mg/$\ell$ and 1,156~6,977mg/$\ell$ and their ratio were generally as high as 0.55~0.74. As C $H_4$ compositions of generated gas were measured in the range of 37.36~60.1%, we could know that C $H_4$ gas was actively generated. Organic matters by open-cut test averaged 13.4~16.6% at each landfill layer, and considering rate of combustible compositions(36.2~66.5%) for landfilling wastes, they have been actively decomposed. The measured and theoretical values of generated gas in waste landfill site were almost similar to C $H_4$ 50.0% and 53.4%, $CO_2$ 39.63% and 45.24%, and after 0.5$^{\circ}C$ with heavy depth and long landfill period. From the results of pilot test for stabilization, after 180 days organic matters were actively decomposed beyond 2.2 times in facultative aerobic lystimeter(B) to exsiting anaerobic lysimeter(A). Therefore, it seemed that landfill site was of benefical to the conversion of facultative aerobic for stabilization.

  • PDF

Characteristics of Stabilization of Excavated Solid Wastes by Aerobic and Anaerobic Landfilling (호기 및 혐기매립에 의한 굴착폐기물의 안정화 특성 연구)

  • Park, Jin-Kyu;Oh, Dong Ik;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.3
    • /
    • pp.76-85
    • /
    • 2004
  • Anaerobic decomposition of municipal solid waste (MSW) had potential adverse impacts such as the production of methane and long-term post closure on human health and the environment. It was demonstrated that aerobic degradation of MSW resulted in the reduction of a methane yield and the enhancement of stabilization of MSW. Excavated solid wastes were both aerobically and anaerobically treated in order to evaluate the effects of air injection on the stabilization of landfill site. The municipal solid waste (MSW) samples were excavated from a 10-year old landfill (operation period: 1991. 11~1994. 11), Jeonju, Korea. Excavated municipal solid wastes are primarily composed of soils and vinyl/plastics. For the two aerobic simulated lysimeters, the levels of $O_2$ ranged 1.6~23.1% and the levels of $CO_2$ ranged 1.5~15.1%, which confirmed the aerobic decomposition. Aeration did prevent methane formation. For the anaerobic simulated lysimeter, the $CO_2$ rose as $O_2$ was consumed and low levels of CH4 were produced. The pH levels ranged from 7.7 to 8.9 for anaerobic lysimeter and from 7.3 to 8.5 for aerobic lysimeters. As expected, aerobic treatment proved to enhance the removal of biodegradable materials in the excavated solid wastes when monitoring the concentration of BOD, COD, $NH_4-N$, and $NO_3-N$ in the leachate.

  • PDF