• Title/Summary/Keyword: aerobic degradation

Search Result 123, Processing Time 0.028 seconds

The Microcosm study for evaluating biobarrier application on sequential degradation of TCE products by Gasoline-Degradaing Mixed Culture

  • Lee, Jae-Sun;Lee, Si-Jin;Lee, Young-Kee;Chang, Soon-Woong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.440-444
    • /
    • 2003
  • A new approach for ground water treatment combines a permeable Fe(0) barrier to breakdown higher chlorinated solvents like PCE and TCE with a down gradient aerobic biological treatment system to biotransform less chlorinated solvents, such as DCE and vinyl chloride (VC). The expected bacterial performance down gradient of an Fe(0) barrier was evaluated through laboratory batch experiments with a toluene-degrading mixed culture that cometabolically transforms cis-1,2-DCE and VC. The amount of cis-1,2-DCE (initially at 2,000 ppb) and VC (initially at 2,000 ppb) transformed was controlled by the initial toluene(20,000 ppb) concentration. VC was removed much more effectively than Cis-1,2-DCE, and a higher toluene concentration in comparison to the co-substrate concentrations was needed for complete co-substrate removal. Overall, the coupling of an Fe(0) barrier and subsequent biodegradation appears feasible for remediation of complex mixtures of chlorinated solvents and petroleum hydrocarbons in groundwater.

  • PDF

A Study on the Development of Resistance Exercise Prescription System for the Health Improvement of the Older Adults (고령자 건강증진을 위한 저항성 운동처방 시스템 구축에 관한 연구)

  • Wang, Jong Soo;Son, Lak Seong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.69-81
    • /
    • 2010
  • Physical manifestations of aging due to the lack of exercise include the slowing down of motor learning, cardiopulmonary degradation, and the increasing difficulty to adapt to the environment. Aging is manifested with the lack of aerobic exercise work, decrease in muscular endurance, decline in skeletal and muscular strength, flexibility and agility, and the decrease in reaction speed and balance. Added to those are aging-related physiological changes, including the reduction of muscle bulk, increased body fat, decrease in total body water and basic metabolic rate as activities are reduced, and a decrease in cell and Lean Body Mass (LBM). These changes are known to cause problems. Interest and participation in appropriate physical activities among the elderly is needed to help them increase stamina, avoid diseases, maintain a clear intellect, and basically enable the elderly to live their daily lives as easy as possible. Therefore, physical activities are necessary for the elderly to enhance health-related factors. Special exercises should be performed for the enhancement of muscle function, muscle endurance, flexibility, agility, and balance. An accurate measurement of cardio-respiratory endurance and stamina through basic physical and cognitive characteristics of older adults is also required to ensure safety. Also, the development of a more scientific resistance exercise prescription system for the elderly is desperately needed.

Storage of Bull and Boar Semen: Novel Concepts Derived Using Magnetized Water and Antioxidants

  • Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Artificial insemination technique has been contributed immensely for production of livestock worldwide as a critical assisted reproductive technique to preserve and propagate excellent genes in domestic animal industry. In the past decade, methods for semen preservation have been improved mostly in liquid preservation method for boar semen and freezing method for bull semen. Among many factors affecting semen quality during preservation, reactive oxygen species, produced by aerobic respiration in sperm for survival and motility, are unfavorable to sperm physiology. In mammalian cell as well as in the sperm, antioxidant system plays a role in degradation of reactive oxygen species. Magnetized water forms smaller stabilizing water clusters, resulting in high absorption and permeability of the cell for water, implicating its application for semen preservation. Therefore, this review focuses on preservation methods of boar and bull semen with respect to improvement of extender and reduction of reactive oxygen species by using magnetized water and supplementation of antioxidants.

Production of high dissolved O2/O3 with rotating wheel entraining gas method for environmental application

  • Li, Haitao;Xie, Bo;Hui, Mizhou
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • There is a significant demand to make various dissolved gases in water. However, the conventional aeration method shows low gas mass transfer rate and gas utilization efficiency. In this study, a novel rotating wheel entraining gas method was developed for making high dissolved $O_2$ and $O_3$ in water. It produced higher concentration and higher transfer rate of dissolved $O_2$ and $O_3$ than conventional bubble aeration method, especially almost 100% of gas transfer efficiency was achieved for $O_3$ in enclosed reactor. For application of rotating wheel entraining gas method, aerobic bio-reactor and membrane bio-reactor (MBR) were successfully used for treatment of domestic and pharmaceutical wastewater, respectively; and vacuum ultraviolet $(VUV)/UV+O_3/O_2$ reactors were well used for sterilization in air/water, removal of dust particles and toxic gases in air, and degradation of pesticide residue and sterilization on fruits and vegetables.

Purification of Fucoidan from Korean Sea Tangle (Laminaria religosa) and Isolation of Fucoidan-Degrading Microorganisms (한국산 다시마 유래 Fucoidan의 정제 및 분해균의 분리)

  • Kim, Dae-Seon;Im, Dong-Jung;Mun, Seong-Hun;Seo, Hyeon-Hyo;Park, Yong-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.362-365
    • /
    • 2004
  • The fucoidan from Laminaria relicollected at Wando in Korea was purified with the yield of 2.3% in mass. The monosaccharide composiof the purified fucoidan was nearly identical to that of the commercial standard: fucose 63.71 %, xylose 22.98%, galactose 6.62%, mannose 0.24%, and uronic acid 3.26%. Microorganisms capable of degrading the purified fucoidan were isolated from the colonies on the minimal medium containing 0.2% of purified fucoidan as a sole carbon source. Of these isolates, a strain showing a relatively higher capability to degrade fucoidan, up to 63%, was partially characterized as a Gram positive, aerobic, moderately halophilic marine bacterium.

Biohydrogen production using photosynthesis (광합성을 이용한 바이오수소 생산)

  • Sim, Sang-Jun;Kim, Jun-Pyo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.478-481
    • /
    • 2006
  • Energy is vital to global prosperity, yet dependence on fossil fuels as our primary energy source contributes to global climate change environmental degradation, and health problems. Hydrogen $(H_2)$ offers tremendous potential as a clean renewable energy currency. Hydrogen has the highest gravimetric energy density of any known fuel and is compatible with electrochemical and combustion processes for energy conversion without producing carbon-based emission that contribute to environmental pollution and climate change. Numerous methodologies have been developed for effective hydrogen production. Among them, the biological hydrogen production has gained attention, because hydrogen can be produced by cellular metabolismunder the presence of water and sunlight. The green alga Chlamydomonas reinhardtii is capable of sustained $H_2$ photoproduction when grown under sulfur deprived condition. Under sulfur deprived conditions, PSII and photosynthetic $O_2$ evolution are inactivated, resulting in shift from aerobic to anaerobic condition in the culture. After anaerobiosis, sulfur deprived algal cells induce a reversible hydrogenase and start to evolve $H_2$ gas in the light. According to above principle, we investigated the effect of induction parameters such as cell age, cell density. light intensity, and sulfate concentration under sulfur deprived condition We also developed continuous hydrogen production system by sulfate re-addition under sulfur deprived condition.

  • PDF

The Effect of Fumanet Exercise Program for Life care on Cognition Function, Depression in Dementia (라이프케어 증진을 위한 후마네트 운동프로그램이 치매노인의 인지기능, 우울기능에 미치는 영향)

  • Lee, Na Yun;Ahn, So Hyun;Yang, Yeong Ae
    • Journal of agricultural medicine and community health
    • /
    • v.45 no.3
    • /
    • pp.121-129
    • /
    • 2020
  • Purpose: As dementia progresses, cognitive function decreasing leads to memory loss, speech degradation, time and space degradation and judgment degradation, which causes difficulties in carrying out tasks related to daily life. It was said that community-based non-drug intervention therapy for early dementia patients was important to participate in entertainment treatment, including activities such as awareness and exercise therapy, exercise rehabilitation, aerobic exercise, and art. Methods: This study conducted 15 experimental and 15 control groups(experimental group : Fumanet exercise, control group : general occupational therapy) for eight weeks at the Daycare Center in Gyeonggi-do to find out the impact of the Fumanet exercise program on cognitive and depression functions of the elderly. The pre-post evaluation used KGDS, MMSE. Results: There were significant differences between the two groups in the function of menopause, memory recall, attention concentration and calculation, and depression, and no significant results were obtatined in memory registration, language function, understanding and fracture. The Fumanet movement was judged to be effective in improving cognitive function and reducing depression for the elderly with dementia. Conclisions: The Fumanet movement was judged to be effective in improving cognitive function and reducing depression for the elderly with dementia.

Influence of soil organic matter and moisture on the persistence of the herbicide mefenacet in soils (제초제 Mefenacet의 토양 중 분해에 미치는 토양유기물과 토양수분에 의한 영향)

  • Kim, Sung-Min;Cho, Il-Kyu;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.182-187
    • /
    • 2003
  • In order to elucidate a degradation characteristics of herbicide mefenacet in soil, the persistence in soils was studied under laboratory conditions for $90\sim120$ days at $28^{\circ}C$. Mefenacet residues were determined from the two soils which pre-treated by sterilization and flooding, respectively. Non-sterilized upland soil was used as a control. When 70 days elapsed from application time, $55\sim63%$ of mefenacet applied were dissipated in control soils. However, $32\sim33%$ of mefenacet applied were dissipated in the sterilized soils and $33\sim35%$ was dissipated in the flooded soils. 까 lese results indicated that the degradation of mefenacet was assumed to be due to microorganism, especially aerobic microbes. In order to elucidate the influence of water content on the persistence of mefenacet in soil, water content in soils was adjusted to 20, 50, and 80% of the water-holding capacity(Field capacity, WHC). The half-life of mefenacet in soil containing 20% and 50% of WHC were 82 and 73 days, respectively, after incubation for 90 days. However, the half-life in soil containing 80% of WHC was shortened to 61 days. These results indicated that degradation of mefenacet in soil was influenced by the activity of soil microorganism, organic matter content and water content.

Field Tests for Assessing the Bioremediation Feasibility of a Trichloroethylene-Contaminated Aquifer (관측정 자연표류 실험을 통한 트리클로로에틸렌(Trichloroethylene) 오염 지하수의 생물학적 복원 타당성 연구)

  • Kim Young;Kim Jin-Wook;Ha Chul-Yoon;Kim Nam-Hee;Hong Kwang-Pyo;Kwon Soo-Yul;Ahn Young-Ho;Ha Joon-Su;Park Hoo-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.38-45
    • /
    • 2005
  • The feasibility of stimulating in situ aerobic cometabolic activity of indigenous microorganisms was investigated in a trichloroethylene (TCE)-contaminated aquifer. A series of single-well natural drift tests (SWNDTs) was conducted by injecting site groundwater amended with a bromide tracer and combinations of toluene, oxygen, nitrate, ethylene and TCE into an existing monitoring well and by sampling the same well over time. Three field tests, Push-pull Transport Test, Drift Biostimulation Test, and Drift Surrogate Activity Test, were performed in sequence. Initial rate of toluene degradation was much faster than the rate of bromide dilution resulting from natural groundwater drift, indicating stimulation of indigenous toluene-oxidizing microorganisms. Transformation of ethylene, a surrogate probing overall activity of TCE transformation, was also observed, and its transformation results in the production of ethylene oxide, suggesting that some tolueneoxidizing microorganisms stimulated may express a orthomonooxygenase enzyme. Also in situ transformation of TCE was confirmed by greater retardation of TCE than bromide after the stimulation of toluene-oxidizing microorganisms. These results indicate that, in this environment, toluene and oxygen additions stimulated the growth and aerobic cometabolic activity of indigenous microorganisms expressing orthomonooxygenase enzymes. The simple, low-cost field test method presented in this study provides an effective method for conducting rapid field assessments and pilot testing of aerobic cometabolism, which has previously hindered application of this technology to groundwater remediation.

Technical Evaluation of MBR Process for the Wastewater Treatment of Beverage Fabrication Processes (음료수 제조 공정 폐수의 MBR 처리 기술 평가)

  • Jung, Cheol Joong;Park, Jong Min;Kim, Youn Kook
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Manufacturing facility for non-alcoholic drink, the parts of the food industry, disposes wastewater which includes high organic concentration and low nitrogen, phosphorus concentration. For this kind of wastewater, the treatment plant consists mainly of aerobic reactor and chemical coagulation process. And sand-filter or activated carbon process is normally installed further. However, aerobic reactor must have long HRT to treat high concentration of organic contaminant included in this wastewater, so the large site area is required. And settling tank which is normally applied for wastewater treatment facility has some problems such as water quality degradation caused by the sludge spill. To solve these problems, we applied MBR system for the wastewater. And the MBR pilot plant was installed nearby the wastewater treatment facility of W food factory and operated during long term to evaluate treatment efficiency. This plant was operated about 3 months and than the result was 97% of organic removal rate on conditions of flow rate $20m^3/day$, HRT 29 hr, recycle 4Q. However, contaminant removal ratio of bio-reactor decreased and TMP of membrane increased rapidly on more conditions.