• 제목/요약/키워드: aerobic condition

검색결과 429건 처리시간 0.03초

유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가 (The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity)

  • 곽창수;김희석
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.

생리학적(生理學的) 질소고정(窒素固定)에 관(關)한 연구(硏究) -제(第) II 보(報). 답토양(畓土壤)의 물리적특성(物理的特性)-답류형(畓類型), 토성(土性), 배수정도(排水程度), 농업기후대(農業氣候帶)-이 광합성(光合成) 및 타양성질소고정력(他養性窒素固定力)에 미치는 영향(影響) (Studies on Physiological Nitrogen Fixation -II. Effects of soil physical properties-soil texture, soil type, drainage and agricultural locality-on the changes of photo synthetic and aerobic heterotrophic nitrogen fixing activity)

  • 이상규;이명구
    • 한국토양비료학회지
    • /
    • 제20권2호
    • /
    • pp.185-192
    • /
    • 1987
  • 담수상태(湛水狀態)의 논토양(土壤)에서 광합성미생물(光合成微生物) 및 타양성미생물(他養性微生物)에 의한 질소고정력(窒素固定力)을 알기 위하여 우리나라 전국(全國) 수도(水稻) 삼요소시비량시험지(三要素施肥量試驗地) 16개소(個所)의 무질소구(無窒素區) 표토(表土)를 채취(採取)하여 초자실(硝子室)에서 항온(恒溫)하면서 토양통(土壤統), 농업기후대(農業氣候帶), 논토양유형(土壤類型), 토성(土性) 및 배수정도(排水程度)에 따른 질소고정량(窒素固定量) 차이조사(差異調査)를 한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 담수항온기간중(湛水恒溫期間中) 광합성질소고정미생물(光合成窒素固定微生物)에 의한 Acetylene 환원력(還元力)은 항온(恒溫) 7일째, 그리고 타양성질소고정미생물(他養性窒素固定微生物)에 의한 Acetylene 환원력(還元力)은 항온(恒溫) 35일째 가장 높았다. 2. 타양성미생물(他養性微生物)에 의한 질소고정력(窒素固定力)이 가장 높은 토양통(土壤統)은 장계(長溪), 옥천(沃泉) 및 화동통(華東統)이었으며 질소고정력(窒素固定力)이 낮은 토양(土壤)은 부용(芙蓉) 및 대정통(大靜統)이었다. 광합성미생물(光合成微生物)에 의한 질소고정력(窒素固定力)이 가장 높은 토양(土壤)은 대정(大靜) 및 지산통(芝山統)이였으며 낮은 토양(土壤)은 장계(長溪), 함창통(咸昌統)이였다. 3. 항온(恒溫) 105 일간(日間) Acetylene 환원법(還元法)에 의한 생물질소고정량(生物窒素固定量)은 광합성미생물(光合成微生物)에 의하여 3.0mg, 그리고 타양성미생물(他養性微生物)에 의하여 4.9mg/100g이었다. 4. 농업기후대별(農業氣候帶別) 생물질소고정량(生物窒素固定量)은 광합성미생물(光合性微生物)의 경우 기온(氣溫)이 온난(溫暖)한 남부해안지역(南部海岸地域)에서 높고 타양성미생물(他養性微生物)은 산간지(山間地)와 충청내륙지역(忠淸內陸地域)에서 높았다. 5. 답토양유형별(沓土壤類型別) 질소고정량(窒素固定量)은 광합성미생물(光合成微生物)의 경우 보통답(普通沓) 토양(土壤)에서 높고 타양성미생물(他養性微生物)의 경우는 조립질(粗粒質)의 사질답(砂質畓) 토양(土壤)에서 높았다. 6. 토양(土壤)의 특성별(特性別) 질소고정력(窒素固定力)을 볼 때 광합성미생물(光合成微生物)은 배수(排水) 약간불량(若干不良)한 식질(埴質) 혹(或)은 식양질토양(埴壤質土壤)에서 높고 타양성미생물(他養性微生物)은 배수양호(排水良好)한 사질토양(砂質土壤)에서 높았다.

  • PDF

Optimal conditions for pigmentation in Bacillus licheniformis SSA3 and cloning of a DNA fragment involved in pigment production

  • Kim, Jong-Kyu;Shin, Ok-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권1호
    • /
    • pp.22-25
    • /
    • 1995
  • Bacillus licheniformis SSA3 can produce a dark-brown antimutagenic pigment. The optimal conditions for production of this pigment are reached at 0.1% tyrosine, in pH 6-8, within 7-9 days, at $30^{\circ}C$, and in aerobic condition. We cloned a DNA fragment involved in pigment synthesis from Bacillus licheniformis SSA3 using a mutant strain. The cloned DNA was 7kb in size, which can produce the same pigment even in E. coli.

  • PDF

Characterization of Activator of Photopigment and puc Expression, AppA from Rhodobacter sphaeroides 2.4.1

  • Yun, Sang-Hee;Cho, Seung-Hyun;Sa-Ouk kang
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.50-50
    • /
    • 2001
  • Rhodobacter sphaeroides 2.4.1 is a facultatively photoheterotrophic bacterium. The AppA protein is required for increased photo system gene expression upon transition from aerobic respiration to anaerobic photosynthesis condition. This protein has FAD binding domain in amino terminus and cysteine-rich motif in carboxy terminus.(omitted)

  • PDF

BIOCHEMICAL MODEL AND MECHANISM FOR ACINETOBACTER NITRITE INHIBITION

  • Lee, Chan-Won;Weon, Seung-Yeon
    • Environmental Engineering Research
    • /
    • 제10권1호
    • /
    • pp.22-30
    • /
    • 2005
  • Nitrite accumulation is not unusual in batch processes such as sequencing batch reactor (SBR) with high-strength of ammonium or nitrate wastewaters. A possible mechanism of nitrite inhibition on Acinetobacter was depicted in a biochemical model, which the protonated species, nitrous acid form of nitrite, affects proton relating transport at the proton-pumping site crossing the cell membrane under unlimited carbon and phosphorus conditions. This effect exerts inhibition of phosphorylation under aerobic condition and yields low APT/ADP ratio, consequently decrease poly-P synthesis and phosphorus uptake from outside the cell in the model.

오탁하천 하상저니의 산소 소비특성에 관한 연구 (The Characteristric of Oxygen Consumption of Contaminated river-bed Sediment)

  • 한종옥
    • 수도
    • /
    • 통권50호
    • /
    • pp.20-25
    • /
    • 1989
  • Water quality of river is greatly influenced by sediments of planktons, suspended solids and organic matters being transported by efflenced. The water quality is also affected by their release at the place of sediments with slow flow of water. This paper deals with the Characteristics of Oxygen consumption of sediments in small river which is greatly vary with time. Some typical samples of sediment were taken from both aerobic and anaerobic condition reserved for several months. and, the samples of sediment were checked on the relative ratio of oxygen consumption by nitrification.

  • PDF

광합성을 이용한 바이오수소 생산 (Biohydrogen production using photosynthesis)

  • 심상준;김준표
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.478-481
    • /
    • 2006
  • Energy is vital to global prosperity, yet dependence on fossil fuels as our primary energy source contributes to global climate change environmental degradation, and health problems. Hydrogen $(H_2)$ offers tremendous potential as a clean renewable energy currency. Hydrogen has the highest gravimetric energy density of any known fuel and is compatible with electrochemical and combustion processes for energy conversion without producing carbon-based emission that contribute to environmental pollution and climate change. Numerous methodologies have been developed for effective hydrogen production. Among them, the biological hydrogen production has gained attention, because hydrogen can be produced by cellular metabolismunder the presence of water and sunlight. The green alga Chlamydomonas reinhardtii is capable of sustained $H_2$ photoproduction when grown under sulfur deprived condition. Under sulfur deprived conditions, PSII and photosynthetic $O_2$ evolution are inactivated, resulting in shift from aerobic to anaerobic condition in the culture. After anaerobiosis, sulfur deprived algal cells induce a reversible hydrogenase and start to evolve $H_2$ gas in the light. According to above principle, we investigated the effect of induction parameters such as cell age, cell density. light intensity, and sulfate concentration under sulfur deprived condition We also developed continuous hydrogen production system by sulfate re-addition under sulfur deprived condition.

  • PDF

Membrane-BNR 공정의 유동상 담체 호기조내 SND 평가 (SND in Fludized Media Aerobic Tank of Membrane-BNR Process)

  • 이정열;민경석
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.322-328
    • /
    • 2009
  • The advantage of simultaneous nitrification and denitrification (SND) is to reduce requirement of oxygen as well as tank volume. The fludized media was used in the oxic (aerobic) tank of Membrane-BNR to enhance the efficiency of SND. Nowadays, the interest of applying membrane to the wastewater treatment plant has been increased, which is proved by a lot of research published about the MBR. The Membrane-BNR, consisted of total 5 reactors might be called the compact process by using the fludized media and having short HRT of 6.5 hr. It could attain the further removal of not only the organics but also nutrients such as T-N and T-P. The mode A and B were identified with or without the step feed of influent. The mode A was classified with 3 modes according to the different DO concentration in the fludized media aerobic reactor, and the mode B with step feed was operated with the optimum DO condition. The step-feed was capable of improving TN removal efficiency under the domestic wastewater with the low ratio C/N. On the other hand, the efficiency of SND with the 1.0~1.5 mg/L DO in the oxic media tank was better than the one with below 1.0 mg/L, on which the nitrification did not happen enough, and with above 3.5 mg/L, on which the reduction of anoxic area in the tank happened. It means that the profitable nitrification should be performed prior to the denitrification step. The removal efficiency of nitrogen by SND was about 20% among of total denitrified nitrogen. And some organic carbon consumed could be reduced by the endogeneous denitrification.

Differentiation in Nitrogen-Converting Activity and Microbial Community Structure between Granular Size Fractions in a Continuous Autotrophic Nitrogen Removal Reactor

  • Qian, Feiyue;Chen, Xi;Wang, Jianfang;Shen, Yaoliang;Gao, Junjun;Mei, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1798-1807
    • /
    • 2017
  • The differentiations in nitrogen-converting activity and microbial community structure between granular size fractions in a continuous completely autotrophic nitrogen removal over nitrite (CANON) reactor, having a superior specific nitrogen removal rate of $0.24g/(g\;VSS{\cdot}h)$, were investigated by batch tests and high-throughput pyrosequencing analysis, respectively. Results revealed that a high dissolved oxygen concentration (>1.8 mg/l) could result in efficient nitrite accumulation with small granules (0.2-0.6 mm in diameter), because aerobic ammonium-oxidizing bacteria (genus Nitrosomonas) predominated therein. Meanwhile, intermediate size granules (1.4-2.0 mm in diameter) showed the highest nitrogen removal activity of $40.4mg/(g\;VSS{\cdot}h)$ under sufficient oxygen supply, corresponding to the relative abundance ratio of aerobic to anaerobic ammonium-oxidizing bacteria (genus Candidatus Kuenenia) of 5.7. Additionally, a dual substrate competition for oxygen and nitrite would be considered as the main mechanism for repression of nitrite-oxidizing bacteria, and the few Nitrospira spp. did not remarkably affect the overall performance of the reactor. Because all the granular size fractions could accomplish the CANON process independently under oxygen limiting conditions, maintaining a diversity of granular size would facilitate the stability of the suspended growth CANON system.