• Title/Summary/Keyword: aerobic condition

Search Result 429, Processing Time 0.024 seconds

A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria (호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구)

  • Bae, Yoon-Sun;Kim, Soon-Young;Nam, Duck-Hyun;Park, Chul-Hwi;Kim, Jin-Su;Takada, Kazu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

Effect of Oxygen and Moisture on Stabilization of Municipal Solid Wastes in Landfill (폐기물매립지에 있어서 산소와 수분이 매립폐기물의 안정화에 미치는 영향)

  • Kim, Hye-Jin;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.139-150
    • /
    • 2006
  • Landfilling is one of the most widely used methods for the final disposal of solid wastes. Landfilled wastes are degraded by residing microorganisms and the microbial degradation is affected by many factors such as moisture, oxygen, pH, alkalinity, sulphate, nutrient, temperature, and so on. Especially among these factor, oxygen and moisture within aerobic landfill play a major role in microbial degradation. In this study, 1) the effects of oxygen on the velocity of waste degradation and 2) the effect of moisture on the degradation of municipal solids waste (MSW) in aerobic condition were investigated. It was found that the BOD and CODcr concentration from the leachate of aerobic lysimeters dropped faster by 80 days after the start of the test compared to those from the anaerobic lysimeters. To see the effect of moisture, four aerobic lysimeters filled with MSW and four different levels of moisture (20, 30, 40, and 50%) were installed. From this test, higher moisture in MSW produced higher $CO_2$ concentration, meaning moisture was effective for the microbial degradation. thus, we concluded that higher moisture level in the aerobic landfill might help early-stabilization microbial degradation.

  • PDF

The Influences of Addition of Sugar with or without L. buchneri on Fermentation and Aerobic Stability of Whole Crop Maize Silage Ensiled in Air-stress Silos

  • Guan, Wu-Tai;Driehuis, F.;Van Wikselaar, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1738-1742
    • /
    • 2003
  • The whole plant of crop maize was chopped and ensiled in double-layered polyethylene bags to determine the influence of residual sugar on the fermentation of lactic acid and aerobic stability by L. buchneri in whole crop maize silage made in airstress condition. There were a total of six treatments used in this experiment as follow: added 25 g de-mineralised water per kg chopped maize serving as control (con), 37.5 g glucose solution containing 12.5 g glucose ($g_1$), 75 g glucose solution containing 25 g glucose ($g_2$), 25 g, L,.buchneri suspension intended for $10^6$ cfu $g^{-1}$ (L.b.), $g_1$+L.b. and $g_2$+L.b. All silos were opened at day 91 after ensiling for measuring the pH values, microbiological enumeration, fermentative products and aerobic stability. The dry matter loss increased significantly (p<0.01) due to inclusion of sugar or L. buchneri. The lower lactic acid concentrations were observed (p<0.01) in silages inoculated with L. buchneri only or in combination with sugar addition than the correspondent uninoculated silages. Compared with control silage, ethanol production was about 3 or 6-fold higher due to addition 12.5 or 25 g glucose per kg chopped maize at ensiling. The silages added with sugar contained less acetic acid concentration (p<0.01) than control, but silages inoculated with L. buchneri showed the contrary effects (p<0.01) at different sugar levels. No butyric acid was found in uninoculated silages, silages inoculated with L. buchneri. producted more propionic acid, 1-propanol and butyric acid. Lactic acid bacteria counts increased markedly (p<0.01) due to inoculation with L. buchneri, whereas it was reduced (p<0.01) by added sugar. No significant difference was observed in count of yeast, but inoculation with L. buchneri shows a decreasing trend. Mould count in all silages was less than 2 (log cfu $g^{-1}$). The added sugar had negative effects on aerobic stability of maize silage made under air-stress conditions, whereas inoculation with L. buchneri improves (p<0.01) the aerobic stability.

Studies on the Decomposition of Environmental Pollutants by Utilizing Microorganisms (미생물을 이용한 환경오염원의 분해에 관한 연구 II)

  • 이재구;김기철;김창한
    • Korean Journal of Microbiology
    • /
    • v.20 no.2
    • /
    • pp.53-66
    • /
    • 1982
  • 1. When Chong Ju and Chung Ju soils possessing different physicochemical properties were treated with 500 ppm of TOK and incubated in flooded anaerobic condition for 2, 4, and 6 months, respectively, they produced 4-Chloro-4'-amino diphenyl ether, 2,4-Dichloro-4'-amino diphenyl ether(amin-TOK), N-[4'-(4-Chlorophenoxy)] phenyl acetamide, and N-[4'-(4-Chlorophenoxy)] phenyl formamide as the metabolities. This result indicates that TOK undergose the reduction of its $NO_2\;to\;NH_2$ group, dechlorination, acetylation, and formylation under this condition. The cleavage of ether linkage does not occur. In addition, TOK degrades more readily in Chung Ju soil which is characterized by pH 6.43 and higher contents of $Ca^{++}$ and C.E.C. than in Chong Ju soil which is lower in pH, $Ca^{++}$, and C.E.C. 2. In the aerobic incubation of TOK of 25ppm in Chung Ju soil suspension for 21 days, the ratio of the resulting metabolites, TOK : amino-TOK : 4-Chloro-4'-amino diphenyl ether was 100 : 130 : 76. Meanwhile, in the 42 day incubation, the ratio was 100 : 19 : 5, which indicates that TOK in aerobic condition dose not necessrily degrade as a function of the incubation period. 3. The citrate buffer extract of Chung Ju soil has the capability of degrading TOK, which was verified to be due to the action of the microorganisms involved. 4. Twelye strains of soil bacteria were isolated from the TOK-treated soils. In the incubation of TOK in pure cultures of the respective isolates, the strain T-1-1 isolated from Chong Ju soil had almost no degradability whereas the strain T-2-3 was the most potent. The degradation of TOK by the isolates constituted mostly the reduction of the nitro group to amino group. 5. In a test for the degradability of TOK by some selected microorganisms, Pseudomonas species were more potent than fungi. Yet, Isolate B which had been isolated from Chung Ju soil suspension was the most potent.

  • PDF

Operation Condition and Characteristics for Treatment of Piggery Slurry using Thermophilic Aerobic Oxidation System (축산분뇨 처리에 적용된 급속액상부숙기술(TAO system)의 운전특성과 운전조건)

  • 이명규;이원일
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.161-168
    • /
    • 2000
  • The study exploited TAO system for the treatment of piggery slurry and aimed to draw characteristics and conditions of the reactor by differentiating the number of air input pump and foam cutter. The results are: 1. Under different operation condition, Run-3 with three air input pumps and four foam cutters showed the highest efficiency in the change of water level and temperature; 40-70cm and 45-55$^{\circ}C$, respectively. 2. Evaporation volume in Run-3 was the highest; 55.5l/$m^2$ . day in Run-1, 75.0/$m^2$ . day in Run-2, and 120.3/$m^2$ . day in Run-3. 3. Throughout the experimental period, temperature inside the reactor was maintained at around 5$0^{\circ}C$, regardless of seasonal temperature changes.

  • PDF

Isolation and Characterization of Phosphorus Accumulating Acinetobacter CW3 (인 축적균 Acinetobacter CW3의 분리 및 특성)

  • 심성훈;류원률;이영호;김정목;조무환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.71-75
    • /
    • 1999
  • A highly effective phosphorus accumulating bacterium named Acinetobacter CW3 was isolated from the nature by using Winogradsky columns. The optimal cultivation conditions of Acinetobacter CW3 in shaking flask were determined as $20^{\circ}C$, pH 7, 200rpm, 18.5mg $PO_4$-P/L. Acientobacter CW3 could remove phosphorus completely in 12hours for a batch culture at optimal cultivation condition. This bacterium could uptake phosphorus on aerobic condition and release it on anaerobic condition.

  • PDF

Evaluation of the Reducing Efficiency of Vertical and Horizontal Wetland Using Intermittent Flow System (간헐식 흐름방식을 활용한 수직·수평 습지의 정화효율 평가)

  • Joo, Kwang Jin;Lee, Dong Min;Kim, Ki Jung;Cho, Yong Chul;Jang, Gwang Hyeon;Choi, I Song;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.142-148
    • /
    • 2017
  • Nitrogen and phosphorus are key factors in causing eutrophication of water body. In this study, ceramics media was selected to increase the removal efficiency of nitrogen and phosphorus. We designed vertical, horizontal flow constructed wetlands to create aerobic and anaerobic flow conditions by using the media, then proceeded to performance evaluations after acrylic reactors were produced. In the case of vertical and horizontal flow constructed wetlands, we measured oxygen concentrations to evaluate aerobic and anaerobic conditions. we got the result of 2.7 mg/L in the aerobic condition, N.D in the anaerobic condition respectively, which suited our purpose. The result of the combined vertical and horizontal flow condition showed that the removal efficiency of SS was 94%, 91%, 61% at 140 min, 80 min, 60 min of running times, respectively, and the removal efficiency of T-P was 84%, 71%, 63% during each running time. In case of T-N, the removal efficiency was 63%, 49%, 42% during each running time. We found that the reactor exerted better removal efficiency when in the short time compared to 12 - 24 hr residence time of existing wetlands. In this study, we conducted experiments to explore functional effects after applying combined vertical and horizontal flow methods in the field. Further study will be carried out to identify its mechanism and administrative perspective.

Assessment of Pollution Characteristics of Surface Sediments from Lake Andong(II): Studies on the Nutrient and Heavy Metal Release Characteristics from Sediments in Andong Dam (안동댐 퇴적물의 오염도 평가(II): 안동댐 퇴적물에 대한 영양염류 및 중금속 용출 특성 연구)

  • Kim, Young Hun;Park, Jae Chung;Shin, Tae Cheon;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.391-405
    • /
    • 2020
  • Leaching chracteristics of Andong-dam sediment was conducted for heavy metal and nutrients. Five mixed sediment samples were prepared and leaching was conducted under aerobic and anaerobic condition for 60 days. Cd, Cu, Pb, Cr, Zn, Hg, As, Fe, Mn, phosphorus, and nitrogen were analyzed at each sampling time. The leaching rate of phosphorus was higher in anaerobic condition comparing with that of under aerobic condition. Some samples showed higher than the water-quality level IV. In case of As and Cd which showed highest contamination level in the sediment, leached concentration were 0.028 mg/L and 0.003 mg/L in maximum, respectively. The leached concentration is below than the lake water quality standard of Korea. Other heavy metals including Cu, Pb, and Cr also showed similar trend. Five step sequential extraction showed that easily extractable 1-2 step portion such as ion-exchangeable and adsorbed one was less than 10% and the most of the portion was residual. For As and Cd, the residual portion were 80% and 95% respectively indicating the risk by the heavy metal leaching into the lake for a short period was not high in comparing with the contamination levels.

The pH as a Control Parameter for Oxidation-Reduction Potential on the Denitrification by Ochrobactrum anthropi SY 509

  • Kim, Sung-Hong;Song, Seung-Hoon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.639-642
    • /
    • 2004
  • The pH as a control parameter for oxidation-reduction potential (ORP) was investigated through the denitrification by Ochrobactrum anthropi SY509 under non-growing condition. The optimal pH of nitrate reductase was 7.0, and the minimal ORP level was -250 mV for the denitrification under aerobic condition. In the case of anaerobic condition, the optimal pHs of nitrate and nitrite reductase were shifted to 10.0 and 9.0, respectively, and the minimal ORP levels of nitrate and nitrite reductase were decreased to -370 mV and -340mV, respectively. In the case of alkaline pH and anaerobic condition, the denitrification efficiency of nitrate was increased up to about 2-fold over that of neutral pH and anaerobic condition. Therefore, the combined control of pH and ORP in the anaerobic condition is shown to be an important parameter in the biological denitrification process.

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9

  • Lee, Han-Woong;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1958-1965
    • /
    • 2008
  • A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.