• Title/Summary/Keyword: aerial control

Search Result 750, Processing Time 0.021 seconds

Moving Target Indication using an Image Sensor for Small UAVs (소형 무인항공기용 영상센서 기반 이동표적표시 기법)

  • Yun, Seung-Gyu;Kang, Seung-Eun;Ko, Sangho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1189-1195
    • /
    • 2014
  • This paper addresses a Moving Target Indication (MTI) algorithm which can be used for small Unmanned Aerial Vehicles (UAVs) equipped with image sensors. MTI is a system (or an algorithm) which detects moving objects. The principle of the MTI algorithm is to analyze the difference between successive image data. It is difficult to detect moving objects in the images recorded from dynamic cameras attached to moving platforms such as UAVs flying at low altitudes over a variety of terrain, since the acquired images have two motion components: 'camera motion' and 'object motion'. Therefore, the motion of independent objects can be obtained after the camera motion is compensated thoroughly via proper manipulations. In this study, the camera motion effects are removed by using wiener filter-based image registration, one of the non-parametric methods. In addition, an image pyramid structure is adopted to reduce the computational complexity for UAVs. We demonstrate the effectiveness of our method with experimental results on outdoor video sequences.

Optimum Elevation Angle Control of the Receiving Antenna for the Long Distance Air-Ground Common Data Link (장거리 공중-지상 영상정보용 데이터링크의 수신 안테나 최적 고각 제어 방법)

  • Ryu, Young-jae;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1528-1538
    • /
    • 2016
  • Common data link systems are designed to transmit the imaginary and signal intelligence data at long distance air-ground line of sight(LOS) link. In this paper, we analyze the received power variation according to the communication distance of the common data link using curved earth 2-Ray model suitable for received signal power analysis of long distance air-ground wireless channel. We propose optimal elevation angle control method of the receiving antenna to reduce a power variation caused by ground-reflected wave. Proposed method can get additional link margin compared to the conventional method without any additional hardware performance enhancement.

A Study on Real-Time Position Analysis and Wireless Transmission Technology for Effective Acquisition of Video Recording Information in UAV Video Surveillance (유효영상 획득을 위한 무인기 영상감시의 실시간 위치분석과 무선전송 기술에 관한 연구)

  • Kim, Hwan-Chul;Lee, Chang-Seok;Choi, Jeong-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1047-1057
    • /
    • 2015
  • In this paper, we propose an effective wireless transmission technology, under poor wireless transmission channel surroundings caused by speedy flying, that are able to transmit high quality video recording information and surveillance data via accessing to various wireless networking services architecture such as One-on-One, Many-on-One, One-on-Many, Over the Horizon. The Real-Time Position Analysis(RAPA) method is also suggested to provide more meaningful video information of shooting area. The suggested wireless transmission technology and RAPA can make remote control of UAV's flight route to get valuable topography information. Because of the benefit to get both of video information and GPS data of shooting area simultaneously, the result of study can be applied to various application sphere including UAV that requires high speed wireless transmission.

Flight Dynamic Identification of a Model Helicopter using CIFER®(II) - Frequency Response Analysis - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (II) - 주파수 응답 해석 -)

  • Bae, Yeoung-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.476-483
    • /
    • 2011
  • The aerial application using an unmanned helicopter has been already utilized and an attitude controller would be developed to enhance the operational convenience and safety of the operator. For a preliminary study of designing flight controller, a state space model for an RC helicopter would be identified. Frequency sweep flight tests were performed and time history data were acquired in the previous study. In this study, frequency response of the flight test data of a small unmanned helicopter was analyzed by using the CIFER software. The time history flight data consisted of three replications each for collective pitch, aileron, elevator and rudder sweep inputs. A total of 36 frequency responses were obtained for the four control stick inputs and nine outputs including linear velocities and accelerations and angular velocities in 3-axis. The results showed coherence values higher than 0.6 for every primary control inputs and corresponding on-axis outputs for the frequency range from 0.07 to 4 Hz. Also the analysis of conditioned frequency response showed its effectiveness in evaluating cross coupling effects. Based on the results, the dynamic characteristics of the model helicopter can further be analyzed in terms of transfer functions and the undamped natural frequency and damping ratio of each critical mode.

Volatile Aroma Compounds of Several Domestic Thymus quinquecostatus by Thermal Desorption Gas Chromatograph Mass Spectrometer (열탁착식 가스크로마토질량분석기에 의한 국내 산지별 백리향의 휘발성향기성분)

  • Chiang, Mae-Hee;Lee, Kwang-Woo;Baik, Jung-Ae
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2011
  • Objective of this research was to investigate the volatile aroma compounds and phenol contents for preservative effects. Aerial part of 5 Korean natured species of thyme located in Jeju alpine, jeju middle mountain, Kyeonggido, Ulleung island, and Gangwondo was analyzed by thermal desorption gas chromatograph mass spectrometer (TD-GC-MSD) method. Jeju middle mountain thyme was relatively high 62 species and has been investigated a high concentration of $7365.22{\mu}g/m^3$ contents according to the quantitative analysis. Total phenol contents containing thymol and carvacrol of Jeju middle mountain thyme were relatively high and showed 35.92%.

Leaderless Formation Control Strategy and Stability Analysis for Multiple UAVs (리더가 없는 방식의 다수 무인기 편대비행 제어와 안정성 해석)

  • Seo, Joong-Bo;Ahn, Chae-Ick;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.988-995
    • /
    • 2008
  • A consensus-based feedback linearization method is proposed to maintain a specified time-varying geometric configuration for formation flying of multiple autonomous vehicles. In this approach, there exists no explicit leader in the team, and the proposed control strategy requires only the local neighbor-to-neighbor information between vehicles. The information flow topology between the vehicles is defined by Graph Laplacian matrix, and the formation flying can be achieved by the proposed feedback linearization with consensus algorithm. The stability analysis of the proposed controller is also performed via eigenvalue analysis for the closed-looop system. Numerical simulation is performed for rotary-wing type micro aerial vehicles to validate the performance of the proposed controller.

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

Indoor 3D Map Building using the Sinusoidal Flight Trajectory of a UAV (UAV의 정현파 궤적 알고리즘을 이용한 3차원 실내 맵빌딩)

  • Hwang, Yo-Seop;Choi, Won-Suck;Woo, Chang-Jun;Wang, Zhi-Tao;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.465-470
    • /
    • 2015
  • This paper proposes a robust 3D mapping system for a UAV (Unmanned Aerial Vehicle) that carries a LRF (Laser Range Finder) using the sinusoidal trajectory algorithm. In the case of previous 3D mapping research, the UAV usually takes off vertically and flights up and down while the LRF is measuring horizontally. In such cases, the measuring range is limited and it takes a long time to do mapping. By using the sinusoidal trajectory algorithm proposed in this research, the 3D mapping can be time-efficient and the measuring range can be widened. The 3D mapping experiments have been done to evaluate the performance of the sinusoidal trajectory algorithm by scanning indoor walls.

Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter (순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증)

  • Lee, Seongheon;Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

Autonomous Aerobatic Flight for Fixed Wing Aircraft (고정익 항공기의 자율 곡예비행)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1217-1224
    • /
    • 2009
  • A simple and effective guidance and control scheme that enables autonomous three-dimensional path-following for a fixed wing aircraft is presented. The method utilizes the nonlinear path-following guidance law for the outer loop that creates steering acceleration command based on the desired flight path and the current position and velocity of the vehicle. The scheme considers the gravity in the guidance level, where it is subtracted from the acceleration command to form the specific force acceleration command which the aircraft is better suited to follow than the total acceleration command in the inner-loop. A roll attitude control scheme is also presented that enables inverted flight or sideslip maneuvers such as slow roll and knife-edge. A series of aerobatic maneuvers are demonstrated through simulations to show the potential of the proposed scheme.