• Title/Summary/Keyword: adversarial attack

Search Result 66, Processing Time 0.019 seconds

A Study on Robustness Evaluation and Improvement of AI Model for Malware Variation Analysis (악성코드 변종 분석을 위한 AI 모델의 Robust 수준 측정 및 개선 연구)

  • Lee, Eun-gyu;Jeong, Si-on;Lee, Hyun-woo;Lee, Tea-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.997-1008
    • /
    • 2022
  • Today, AI(Artificial Intelligence) technology is being extensively researched in various fields, including the field of malware detection. To introduce AI systems into roles that protect important decisions and resources, it must be a reliable AI model. AI model that dependent on training dataset should be verified to be robust against new attacks. Rather than generating new malware detection, attackers find malware detection that succeed in attacking by mass-producing strains of previously detected malware detection. Most of the attacks, such as adversarial attacks, that lead to misclassification of AI models, are made by slightly modifying past attacks. Robust models that can be defended against these variants is needed, and the Robustness level of the model cannot be evaluated with accuracy and recall, which are widely used as AI evaluation indicators. In this paper, we experiment a framework to evaluate robustness level by generating an adversarial sample based on one of the adversarial attacks, C&W attack, and to improve robustness level through adversarial training. Through experiments based on malware dataset in this study, the limitations and possibilities of the proposed method in the field of malware detection were confirmed.

Adversarial Example Detection Based on Symbolic Representation of Image (이미지의 Symbolic Representation 기반 적대적 예제 탐지 방법)

  • Park, Sohee;Kim, Seungjoo;Yoon, Hayeon;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.975-986
    • /
    • 2022
  • Deep learning is attracting great attention, showing excellent performance in image processing, but is vulnerable to adversarial attacks that cause the model to misclassify through perturbation on input data. Adversarial examples generated by adversarial attacks are minimally perturbated where it is difficult to identify, so visual features of the images are not generally changed. Unlikely deep learning models, people are not fooled by adversarial examples, because they classify the images based on such visual features of images. This paper proposes adversarial attack detection method using Symbolic Representation, which is a visual and symbolic features such as color, shape of the image. We detect a adversarial examples by comparing the converted Symbolic Representation from the classification results for the input image and Symbolic Representation extracted from the input images. As a result of measuring performance on adversarial examples by various attack method, detection rates differed depending on attack targets and methods, but was up to 99.02% for specific target attack.

Camouflaged Adversarial Patch Attack on Object Detector (객체탐지 모델에 대한 위장형 적대적 패치 공격)

  • Jeonghun Kim;Hunmin Yang;Se-Yoon Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

Study on Neuron Activities for Adversarial Examples in Convolutional Neural Network Model by Population Sparseness Index (개체군 희소성 인덱스에 의한 컨벌루션 신경망 모델의 적대적 예제에 대한 뉴런 활동에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Convolutional neural networks have already been applied to various fields beyond human visual processing capabilities in the image processing area. However, they are exposed to a severe risk of deteriorating model performance due to the appearance of adversarial attacks. In addition, defense technology to respond to adversarial attacks is effective against the attack but is vulnerable to other types of attacks. Therefore, to respond to an adversarial attack, it is necessary to analyze how the performance of the adversarial attack deteriorates through the process inside the convolutional neural network. In this study, the adversarial attack of the Alexnet and VGG11 models was analyzed using the population sparseness index, a measure of neuronal activity in neurophysiology. Through the research, it was observed in each layer that the population sparsity index for adversarial examples showed differences from that of benign examples.

Research of a Method of Generating an Adversarial Sample Using Grad-CAM (Grad-CAM을 이용한 적대적 예제 생성 기법 연구)

  • Kang, Sehyeok
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.878-885
    • /
    • 2022
  • Research in the field of computer vision based on deep learning is being actively conducted. However, deep learning-based models have vulnerabilities in adversarial attacks that increase the model's misclassification rate by applying adversarial perturbation. In particular, in the case of FGSM, it is recognized as one of the effective attack methods because it is simple, fast and has a considerable attack success rate. Meanwhile, as one of the efforts to visualize deep learning models, Grad-CAM enables visual explanation of convolutional neural networks. In this paper, I propose a method to generate adversarial examples with high attack success rate by applying Grad-CAM to FGSM. The method chooses fixels, which are closely related to labels, by using Grad-CAM and add perturbations to the fixels intensively. The proposed method has a higher success rate than the FGSM model in the same perturbation for both targeted and untargeted examples. In addition, unlike FGSM, it has the advantage that the distribution of noise is not uniform, and when the success rate is increased by repeatedly applying noise, the attack is successful with fewer iterations.

Membership Inference Attack against Text-to-Image Model Based on Generating Adversarial Prompt Using Textual Inversion (Textual Inversion을 활용한 Adversarial Prompt 생성 기반 Text-to-Image 모델에 대한 멤버십 추론 공격)

  • Yoonju Oh;Sohee Park;Daeseon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1111-1123
    • /
    • 2023
  • In recent years, as generative models have developed, research that threatens them has also been actively conducted. We propose a new membership inference attack against text-to-image model. Existing membership inference attacks on Text-to-Image models produced a single image as captions of query images. On the other hand, this paper uses personalized embedding in query images through Textual Inversion. And we propose a membership inference attack that effectively generates multiple images as a method of generating Adversarial Prompt. In addition, the membership inference attack is tested for the first time on the Stable Diffusion model, which is attracting attention among the Text-to-Image models, and achieve an accuracy of up to 1.00.

High Representation based GAN defense for Adversarial Attack

  • Sutanto, Richard Evan;Lee, Suk Ho
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.141-146
    • /
    • 2019
  • These days, there are many applications using neural networks as parts of their system. On the other hand, adversarial examples have become an important issue concerining the security of neural networks. A classifier in neural networks can be fooled and make it miss-classified by adversarial examples. There are many research to encounter adversarial examples by using denoising methods. Some of them using GAN (Generative Adversarial Network) in order to remove adversarial noise from input images. By producing an image from generator network that is close enough to the original clean image, the adversarial examples effects can be reduced. However, there is a chance when adversarial noise can survive the approximation process because it is not like a normal noise. In this chance, we propose a research that utilizes high-level representation in the classifier by combining GAN network with a trained U-Net network. This approach focuses on minimizing the loss function on high representation terms, in order to minimize the difference between the high representation level of the clean data and the approximated output of the noisy data in the training dataset. Furthermore, the generated output is checked whether it shows minimum error compared to true label or not. U-Net network is trained with true label to make sure the generated output gives minimum error in the end. At last, the remaining adversarial noise that still exist after low-level approximation can be removed with the U-Net, because of the minimization on high representation terms.

Adversarial Detection with Gaussian Process Regression-based Detector

  • Lee, Sangheon;Kim, Noo-ri;Cho, Youngwha;Choi, Jae-Young;Kim, Suntae;Kim, Jeong-Ah;Lee, Jee-Hyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4285-4299
    • /
    • 2019
  • Adversarial attack is a technique that causes a malfunction of classification models by adding noise that cannot be distinguished by humans, which poses a threat to a deep learning model. In this paper, we propose an efficient method to detect adversarial images using Gaussian process regression. Existing deep learning-based adversarial detection methods require numerous adversarial images for their training. The proposed method overcomes this problem by performing classification based on the statistical features of adversarial images and clean images that are extracted by Gaussian process regression with a small number of images. This technique can determine whether the input image is an adversarial image by applying Gaussian process regression based on the intermediate output value of the classification model. Experimental results show that the proposed method achieves higher detection performance than the other deep learning-based adversarial detection methods for powerful attacks. In particular, the Gaussian process regression-based detector shows better detection performance than the baseline models for most attacks in the case with fewer adversarial examples.

Ensemble of Degraded Artificial Intelligence Modules Against Adversarial Attacks on Neural Networks

  • Sutanto, Richard Evan;Lee, Sukho
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.148-152
    • /
    • 2018
  • Adversarial attacks on artificial intelligence (AI) systems use adversarial examples to achieve the attack objective. Adversarial examples consist of slightly changed test data, causing AI systems to make false decisions on these examples. When used as a tool for attacking AI systems, this can lead to disastrous results. In this paper, we propose an ensemble of degraded convolutional neural network (CNN) modules, which is more robust to adversarial attacks than conventional CNNs. Each module is trained on degraded images. During testing, images are degraded using various degradation methods, and a final decision is made utilizing a one-hot encoding vector that is obtained by summing up all the output vectors of the modules. Experimental results show that the proposed ensemble network is more resilient to adversarial attacks than conventional networks, while the accuracies for normal images are similar.

Security Vulnerability Verification for Open Deep Learning Libraries (공개 딥러닝 라이브러리에 대한 보안 취약성 검증)

  • Jeong, JaeHan;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.117-125
    • /
    • 2019
  • Deep Learning, which is being used in various fields recently, is being threatened with Adversarial Attack. In this paper, we experimentally verify that the classification accuracy is lowered by adversarial samples generated by malicious attackers in image classification models. We used MNIST dataset and measured the detection accuracy by injecting adversarial samples into the Autoencoder classification model and the CNN (Convolution neural network) classification model, which are created using the Tensorflow library and the Pytorch library. Adversarial samples were generated by transforming MNIST test dataset with JSMA(Jacobian-based Saliency Map Attack) and FGSM(Fast Gradient Sign Method). When injected into the classification model, detection accuracy decreased by at least 21.82% up to 39.08%.