• Title/Summary/Keyword: advection

Search Result 492, Processing Time 0.022 seconds

Mass Balance of Salts, DIP, DIN and DON in the Gomso Tidal Flat (곰소만 조간대에서 Salts, DIP, TDN의 물질 수지)

  • Jeong Yong-Hoon;Kim Yeong-Tae;Kim Ki-Hyun;Kim Soh-Young;Kim Byung-Hoon;Yang Jae-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.68-81
    • /
    • 2006
  • As one of the on-going projects to investigate the biogeochemical characteristics of tidal flat, we develop seasonal mass balance calculations (or DIP, DIN and DON in Gomso Bay. We have obtained 13-hours time-series data of salinity, tidal current, nutrients, and chlorophyll-a of seawater for spring, dry summer, rainy summer and winter during $1999{\sim}2000$. DIP of $-1.10{\times}10^6g\;P\;day^{-1},\;-4.50{\times}10^5g\;P\;day^{-1}$ was out-fluxed from the bay to the bay proper for spring and dry summer, respectively. Whereas $1.06{\times}10^4g\;P\;day^{-1}$ of net influx of DIP was found during winter and $2.72{\times}10^6g\;P\;day^{-1}$ of net influx was also found during the rainy summer. Therefore we suggest the role of Gomso tidal flat as a source of DIP fur the seasons of spring and summer, but as an opposite role during the rainy summer and winter but much smaller in magnitude. Except winter, the advection process by tidal current is found the most dominant flux among the diverse fluxes of DIP in the bay. Whereas ground water is estimated as the strongest flux of TDN except winter. TDN of $1.38{\times}10^7g\;N\;day^{-1},\;2.45{\times}10^6g\;N\;day^{-1},\;and\;4.65{\times}10^7g\;N\;day^{-1}$ was in-fluxed to the bay from the bay proper far spring, rainy summer and summer, respectively. Only $-1.70{\times}10^7g\;N\;day^{-1}$ of net out-flux was found during the winter. Therefore we suggest the role of Gomso tidal flat as a sink of TDN far the year round except winter.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.