• Title/Summary/Keyword: advanced sensors

Search Result 844, Processing Time 0.029 seconds

RF Power Detector for Location Sensing

  • Kim, Myung-Sik;Kubo, Takashi;Chong, Nak-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1771-1774
    • /
    • 2005
  • Recently, RFID has become popular in the field of remote sensing applications. Location awareness is one of the most important keys to deploying RFID for advanced object tracking. Generally, multiple reference RF stations or additional sensors are used for the location sensing with RFID, but, particularly in indoor environments, spatial layout and cost problems limit the applicability of those approaches. In this paper, we propose a novel method for location sensing with active RFID systems not requiring the need for reference stations or additional sensors. The system triangulates the position of RF signal source using the signal pattern of the loop antenna connected to the power detector. The power detector consists of a signal strength detector and a signal analysis unit. The signal analysis unit indicates the signal strength and serial number using the signal from the strength detector, and provides the direction of the signal to the application target. We designed three different signal analysis units depending on the threshold type. The developed system can sense the direction to the transponder located over 10 m away within the maximum error of $5^{\circ}$. It falls within a reasonable range in our normal office environment.

  • PDF

Synthesis of Au@TiO2 Core-shell Nanoparticle-decorated rGO Nanocomposite and its NO2 Sensing Properties

  • Kumar Naik, Gautam;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.225-230
    • /
    • 2019
  • $Au@TiO_2$ core-shell decorated rGO nanocomposite (NC) was prepared using a simple solvothermal method followed by heat treatment for gas sensor application. The crystal structure and morphology of the composites were characterized by X-ray powder diffraction and transmission electron microscopy, respectively. The $NO_2$ sensing response of the $Au@TiO_2/rGO$ NC was tested at operating temperatures from $250^{\circ}C$ to $500^{\circ}C$, and was compared with those of the bare rGO and $Au@TiO_2$ core-shell NPs. The $Au@TiO_2/rGO$ NC-based sensor showed a far higher response than the rGO or $Au@TiO_2$ core-shell based sensors, with the maximum response detected when the operating temperature was $400^{\circ}C$. This improved response was due to the high rGO gas absorption capability for $NO_2$ gas and the catalytic effect of $Au@TiO_2$ core-shell NPs in oxidizing $NO_2$ to $NO_3$.

Non-dispersive infrared carbon dioxide sensor with an externally exposed optical cavity (광 도파관이 외부로 노출된 구조를 가지는 비분산적외선 이산화탄소 센서)

  • Jung, Dong Geon;Lee, Junyeop;Do, Nam Gon;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.456-460
    • /
    • 2021
  • In this study, a Non-Dispersive Infrared (NDIR) Carbon Dioxide (CO2) sensor with an externally exposed optical cavity is proposed for improving sensitivity. NDIR CO2 sensors with high performance must use a lamp-type infrared (IR) source with a strong IR intensity. However, a lamp-type IR source generates high thermal energy that induces thermal noise, interfering with the accuracy of the CO2 concentration measure. To solve this problem, the optical cavity of the NDIR CO2 sensor is exposed to quickly dissipate heat. As a result, the proposed NDIR CO2 sensor has a shorter warm-up time and a higher sensitivity compared to the conventional NDIR CO2 sensor.

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

Development of Highly Sensitive SWIR Photodetectors based on MAPI-capped PbS QDs (MAPI 리간드 치환형 PbS 양자점 기반의 고감도 단파장 적외선 광 검출기 개발)

  • Suji Choi;JinBeom Kwon;Yuntae Ha;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2024
  • With the development of promising future mobility and urban air mobility (UAM) technologies, the demand for LIDAR sensors has increased. The SWIR photodetector is a sensor that detects lasers for the 3D mapping of lidar sensor and is the most important technology of LIDAR sensor. An SWIR photodetector based on QDs in an eye-safe wavelength band of over 1400 nm has been reported. QDs-based SWIR photodetectors can be synthesized and processed through a solution process and have the advantages of low cost and simple processing. However, the organic ligands of QDs have insulating properties that limit their ability to improve the sensitivity and stability of photodetectors. Therefore, the technology to replace organic ligands with inorganic ligands must be developed. In this study, the organic ligand of the synthesized PbS QDs was replaced with a MAPI inorganic ligand, and an SWIR photodetector was fabricated. The analysis of the characteristics of the manufactured photodetector confirmed that the photodetector based on MAPI-capped PbS QDs exhibited up to 26.5% higher responsivity than that based on organic ligand PbS QDs.

Gesture based Input Device: An All Inertial Approach

  • Chang Wook;Bang Won-Chul;Choi Eun-Seok;Yang Jing;Cho Sung-Jung;Cho Joon-Kee;Oh Jong-Koo;Kim Dong-Yoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.230-245
    • /
    • 2005
  • In this paper, we develop a gesture-based input device equipped with accelerometers and gyroscopes. The sensors measure the inertial measurements, i.e., accelerations and angular velocities produced by the movement of the system when a user is inputting gestures on a plane surface or in a 3D space. The gyroscope measurements are integrated to give orientation of the device and consequently used to compensate the accelerations. The compensated accelerations are doubly integrated to yield the position of the device. With this approach, a user's gesture input trajectories can be recovered without any external sensors. Three versions of motion tracking algorithms are provided to cope with wide spectrum of applications. Then, a Bayesian network based recognition system processes the recovered trajectories to identify the gesture class. Experimental results convincingly show the feasibility and effectiveness of the proposed gesture input device. In order to show practical use of the proposed input method, we implemented a prototype system, which is a gesture-based remote controller (Magic Wand).

An Implementation of a Map Building Algorithm for Efficient Traveling of Mobile Robots (이동로봇의 효율적인 주행을 위한 맵 빌딩 알고리즘의 구현)

  • Kim, Jong-Hwa;Kim, Jin-Kyu;Lim, Jae-Kwon;Han, Seong-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.184-191
    • /
    • 2008
  • In order for a mobile robot to move under unknown or uncertain environment, it must have an environmental information. In collecting environmental information, the mobile robot can use various sensors. In case of using ultrasonic sensors to collect an environmental information, it is able to comprise a low-cost environmental recognition system compared with using other sensors such as vision and laser range-finder. This paper proposes a map building algorithm which can collect environmental information using ultrasonic sensors. And also this paper suggests a traveling algorithm using environmental information which leads to the map building algorithm. In order to accomplish the proposed traveling algorithm, this paper additionally discusses a position revision algorithm.

Multipoint Pressure-detection Sensors using Microbanding-induced Long-period Fiber Gratings (마이크로밴딩 장주기 광섬유 격자를 이용한 다중위치 압력감지 센서)

  • Sohn, Kyung-Rak;Choi, Young-Gill;Jang, Se-In;Choi, Jae-Yun;Shim, Joon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.449-454
    • /
    • 2006
  • We present a pressure sensor based on the mechanically induced long-period fiber gratings (LPFG) for detecting the multi-location strain variation. The theoretical analysis is performed using a graphic method for a weakly guiding step-index fiber. The calculated results are in good agreement with the experimental results. In this study, from the fact that the optical parameters of a single-mode fiber slightly differ from manufacturing company to manufacturing company, the multipoint pressure-detection sensor systems composed two identical LPFGs are realized. When the pressure is applied two LPFG sensors at once, the resonance peaks are separated as much as about 40 nm. These types of sensor systems are well suited as a multipoint monitoring of strain or temperature in the ship or the smart structure.

RECENT R&D ACTIVITIES ON STRUCTURAL HEALTH MONITORING FOR CIVIL INFRA-STRUCTURES IN KOREA

  • Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.21-32
    • /
    • 2003
  • Developments and applications of the structural health monitoring (SHM) systems have become active particularity for long-span bridges in Korea. They are composed of sensors, data acquisition system, data transmission system, information processing, damage assessment, and information management. In this paper, current status of research and application activities on SHM systems for civil infra-structures in Korea are briefly introduced by 4 parts: (1) current status of bridge monitoring systems on existing and newly constructed bridges, (2) research and development activities on smart sensors such as optical fiber sensors and piezo-electric sensors, (3) structural damage detection methods using measured data, and (4) a test road project for pavement design verification and enhancement by the Korea Highway Corporation. Finally the R&D activities of a new engineering research center entitled Smart Infra-Structure Technology Center at Korea Advanced Institute of Science and Technology are also briefly described.

  • PDF

A Calibration Technique for a Redundant IMU Containing Low-Grade Inertial Sensors

  • Cho, Seong-Yun;Park, Chan-Gook
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.418-426
    • /
    • 2005
  • A calibration technique for a redundant inertial measurement unit (IMU) containing low-grade inertial sensors is proposed. In order to calibrate a redundant IMU that can detect and isolate faulty sensors, the fundamental coordinate frames in the IMU are defined and the IMU error is modeled based on the frames. Equations to estimate the error coefficients of the redundant IMU are formulated, and a test sequence using a 2-axis turntable is also presented. Finally, a redundant IMU with cone configuration is implemented using low-grade inertial sensors, and the performance of the proposed technique is verified experimentally.

  • PDF