• Title/Summary/Keyword: advanced glycoxidation end products (AGEs)

Search Result 2, Processing Time 0.021 seconds

Biological functions of histidine-dipeptides and metabolic syndrome

  • Song, Byeng Chun;Joo, Nam-Seok;Aldini, Giancarlo;Yeum, Kyung-Jin
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.3-10
    • /
    • 2014
  • The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (${\beta}$-alanyl-L-histidine) and anserine (${\beta}$-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.

Correlation of advanced glycation end products and heme oxygenase-1 in Korean diabetic patients (제2형 당뇨병 환자에서 최종당화산물과 heme oxygenase-1의 상관성)

  • Choi, Ha-Neul;Koo, Da-Hye;Yim, Jung-Eun
    • Journal of Nutrition and Health
    • /
    • v.55 no.3
    • /
    • pp.348-358
    • /
    • 2022
  • Purpose: Hyperglycemia accelerates the formation of advanced glycation end products (AGEs), a group of compounds formed via non-enzymatic glycation/glycoxidation. Type 2 diabetes mellitus (T2DM) is related to oxidative stress, resulting in some overgeneration of AGEs. The accumulation of AGEs in T2DM patients leads to increased inflammation, DNA damage, tissue damage, progression of diabetic microvascular disease, and nephropathy. Heme oxygenase-1 (HO-1) is an intracellular enzyme that catalyzes the oxidation of heme. Expression of HO-1 in the endothelium and in muscle monocytes/macrophages was upregulated upon exposure to reactive oxygen species or oxidized low-density lipoprotein. Cells activated by oxidative stress are reported to release HO-1 in the serum. In the current study, we discuss the oxidative status according to the level of AGEs and the association of HO-1 with AGEs or urinary DNA damage marker in type 2 diabetic Korean patients. Methods: This study enrolled 36 diabetic patients. Subjects were classified into two groups by serum AGEs level (Low AGEs group: < 0.85 ng/mL serum AGEs; High AGEs group: ≥ 0.85 ng/mL serum AGEs). Body composition was measured using bioelectrical impedance analysis. Blood and urinary parameters were measured using commercial kits. Results: No significant differences were observed in the general characteristics and body composition between the two groups. Serum HO-1 concentration was significantly higher in the High AGEs group than in the Low AGEs group. After adjustment of age and gender, a correlation was performed to assess the association between serum HO-1 and serum AGEs or urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG). Our results indicate that serum HO-1 is positively correlated with serum AGEs and urinary 8-OHdG. Conclusion: Taken together, our results indicate that in diabetes patients, a high level of HO-1 is associated with a high concentration of AGEs and 8-OHdG, probably reflecting a protective response against oxidative stress.