• Title/Summary/Keyword: advanced control room

Search Result 124, Processing Time 0.026 seconds

Research of KNPEC-2 Simulator Upgrade(I) (원자력 교육원 #2 시뮬레이션 성능개선에 관한 연구(I))

  • 유현주
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.249-252
    • /
    • 2000
  • 원자력 교육원 #2(KNPEC-2) 시뮬레이터는 1980년도 중반에 웨스팅하우스에 의해 공급되어 계속 사용되어 오다가 현재 성능개선 연구가 진행 중이다. 이번 성능개선을 통해 기존의 컴퓨터 시스템(Gould MPX)와 소프트웨어의 전면 교체가 이루어지고 있으며 최적 계산 코드를 이용한 실시간 열수력 모델 (ARTS; Advanced Real-Time Thermal-Hydraulics Simulation) 개발 , 2-Group 3D 실시간 노심모델(REMARK ; REal Time Multigroup Advanced Reactor Kinetics)를 이용한 노심 주기개선 (Cycle Update) 가상현실 기술 등을 이용한 컴퓨터 교육지원 시스템(CATS: Computer Assister Training System)등 새로운 시도가 이루어지고 있으며 본 논문은 이러한 새로운 시도가 이루어지고 있으며 본 논문은 이러한 새로운 시도들 및 그 결과에 대해 기술하고 있다. 기준발전소(Reference Plant)인 영광 1호기 12주기의 노심모델로 주기개선(Cycle Update)을 위한 REMARK의 입력자료 생성을 위해 핵설계 전산체계인 APA(ALPHA-PHOENIX-ANC) 시스템의 출력으로부터 자동으로 REMARK 입력데이타를 생성하기 위한 GUI툴 개발하였다. 또 이를 이용하여 개발된 노심모델은 최적계산코드(RETRAn 3D) 의 열수력 해법을 이용하여 개발된 NSSS 열수력코드(ARTS) 와 결합(Integration) 되어 안정 및 과도 상태 시험에 사용되었으며 원자로 냉각재 펌프 정지등의 몇 가지 과도 시험 계산결과 기존 해석 결과와 잘 일치하였다 중앙제어실(MCR; Main Control Room)내의 운전원 행동만 훈련하도록 되어있는 기존시뮬레이터의 한계를 극복하기 위해 가상현실 (VR) 저작도구를 이용한 발전소 현장 내부를 표현하는 가상발전소 (Virtual Plant) 발전소 현장에 소재하여 기존 시뮬레이터의 모의한계 밖에 있던 패널을 표현한 가상판넬(Virtual Panel)등과 강의실에서 발전소 모의 훈련을 가능케 하기 위해 가상현실 기술을 이용한 컴퓨터 지원 교육훈력 시스템(CATS ; Computer Assister Training System)을 개발 중이며 일부 개발부분을 소개하였다.

  • PDF

Human Error Identification based on EEG Analysis for the Introduction of Digital Devices in Nuclear Power Plants

  • Oh, Yeon Ju;Lee, Yong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • Objective: This paper describes an analysis of electroencephalography(EEG) signals to identify human errors during using digital devices in nuclear power plants(NPPs). Background: The application of an advanced main control room(MCR) has accompanied with lots of changes in different forms and features by virtue of new digital technologies. The characteristics of these digital technologies and devices provide several opportunities for the use of interface management. It can integrate into a compact single workstation in an advanced MCR, allowing workers to operate the plant with minimum physical burden under any operating condition. However these devices may introduce new types of human errors, and thus we need a means to assess and prevent such errors especially those related to digital devices. Method/Conclusion: The EEG data are relatively objective, and thus we introduce several measures to EEG analysis for obtaining the feasibility of human error identification. Application: This study may support to ensure the safety when applying digital devices in NPPs.

A Modification of Human Error Analysis Technique for Designing Man-Machine Interface in Nuclear Power Plants (원자력 발전소 주제어실 인터페이스 설계를 위한 인적오류 분석 기법의 보완)

  • Lee, Yong-Hui;Jang, Tong-Il;Im, Hyeon-Gyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-42
    • /
    • 2003
  • This study describes a modification of the technique for human error analysis in nuclear power plants (NPPs) which adopts advanced Man-Machine Interface (MMI) features based on computerized working environment, such as LCOs. Flat Panels. Large Wall Board, and computerized procedures. Firstly, the state of the art on human error analysis methods and efforts were briefly reviewed. Human error analysis method applied to NPP design has been THERP and ASEP mainly utilizing Swain's HRA handbook, which has not been facilitated enough to put the varied characteristics of MMI into HRA process. The basic concepts on human errors and the system safety approach were revisited, and adopted the process of FMEA with the new definition of Error Segment (ESJ. A modified human error analysis process was suggested. Then, the suggested method was applied to the failure of manual pump actuation through LCD touch screen in loss of feed water event in order to verify the applicability of the proposed method in practices. The example showed that the method become more facilitated to consider the concerns of the introduction of advanced MMI devices, and to integrate human error analysis process not only into HRA/PRA but also into the MMI and interface design. Finally, the possible extensions and further efforts required to obtain the applicability of the suggested method were discussed.

Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel (스테인리스 스틸의 표면 산화피막 성장과 내부식성 상관관계)

  • Park, Youngju;Yu, Jinseok;Sim, Seong Gu;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.152-157
    • /
    • 2021
  • Stainless steel is a metal that does not generate rust. Due to its excellent workability, economic feasibility, and corrosion resistance, it is used in various industrial fields such as ships, piping, nuclear power, and machinery. However, stainless steel is vulnerable to corrosion in harsh environments. To solve this problem, its corrosion resistance could be improved by electrochemically forming an anodized film on its surface. In this study, 316L stainless steel was anodized at room temperature with ethylene glycol-based 0.1 M NH4F and 0.1M H2O electrolyte to adjust the thickness of the oxide film using different anodic oxidation voltages (30 V, 50 V, and 70 V) with time control. The anodic oxidation experiment was performed by increasing the time from 1 hour to 7 hours at 2-hour intervals. Corrosion resistance according to the thickness of the anodic oxide film was observed. Electrochemical corrosion behavior of oxide films was investigated through polarization experiments.

Development of a Crew Resource Management Training Program for Reduction of Human Errors in APR-1400 Nuclear Power Plant (국내 원자력발전소 인적오류 저감을 위한 Crew Resource Management 교육훈련체계 개발)

  • Kim, Sa-Kil;Byun, Seong-Nam;Lee, Dhong-Hoon;Jeong, Choong-Heui
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.37-51
    • /
    • 2009
  • The nuclear power industry in the world has recognized the importance of integrating non-technical and team skills training with the technical training given to its control room operators to reduce human errors since the Three Mile Island and Chernobyl accidents. The Nuclear power plant (NPP) industry in Korea has been also making efforts to reduce the human errors which largely have contributed to 120 nuclear reactor trips from the year 2001 to 2006. The Crew Resource Management (CRM) training was one of the efforts to reduce the human errors in the nuclear power industry. The CRM was developed as a response to new insights into the causes of aircraft accidents which followed from the introduction of flight recorders and cockpit voice recorders into modern jet aircraft. The CRM first became widely used in the commercial airline industry, but military aviation, shipboard crews, medical and surgical teams, offshore oil crews, and other high-consequence, high-risk, time-critical industry teams soon followed. This study aims to develop a CRM training program that helps to improve plant performance by reducing the number of reactor trips caused by the operators' errors in Korean NPP. The program is; firstly, based on the work we conducted to develop a human factors training from the applications to the Nuclear Power Plant; secondly, based on a number of guidelines from the current practicable literature; thirdly, focused on team skills, such as leadership, situational awareness, teamwork, and communication, which have been widely known to be critical for improving the operational performance and reducing human errors in Korean NPPs; lastly, similar to the event-based training approach that many researchers have applied in other domains: aircraft, medical operations, railroads, and offshore oilrigs. We conducted an experiment to test effectiveness of the CRM training program in a condition of simulated control room also. We found that the program made the operators' attitudes and behaviors be improved positively from the experimental results. The more implications of the finding were discussed further in detail.

Numerical and experimental studies of cryogenic reciprocating expander without inner piston

  • Park, Sehyeon;Bae, Junhyuk;Kim, Kyoungjoong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • It is difficult to fabricate and maintain moving parts of expander at cryogenic temperature. This paper describes numerical analysis and experimental investigation on a cryogenic reciprocating expander without moving piston. An intake valve which takes high-pressure gas, and an exhaust valve which discharges low-pressure gas, are connected to a tube. The inside pressure of the tube is pulsated for work production. This geometric configuration is similar to that of pulse tube refrigerator but without regenerator. An orifice valve and a reservoir are installed to control the phase of the mass flow and the pressure. At the warm end, a heat exchanger rejects the heat which is converted from the produced work of the expanded gas. For the numerical analysis, mass conservation, energy conservation, and local mass function for valves are used as the governing equations. Before performing cryogenic experiments, we carried out the expander test at room temperature and compared the performance results with the numerical results. For cryogenic experiments, the gas is pre-cooled by liquid nitrogen, and then it enters the pulse tube expander. The experiments are controlled by the opening of the orifice valve. Numerical analysis also found the expander conditions that optimize the expander performance by changing the intake pressure and valve timing as well as the opening of the orifice valve. This paper discusses the experimental data and the numerical analysis results to understand the fundamental behavior of such a newly developed non-mechanical expander and elucidate its potential feature for cryogenic application.

Effect of Irradiation Time after Harvesting and Irradiation Dose on its Storability of Potatoes (감자 수확후(收穫後) 방사선(放射線) 조사시기(照射時期) 및 조사선량(照射線量)이 그 저장성(貯藏性)에 미치는 영향(影響))

  • Cho, Han-Ok;Byun, Myung-Woo;Kwon, Joong-Ho;Yang, Ho-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.4
    • /
    • pp.53-59
    • /
    • 1982
  • In order to determine the optimun condition for the long term storage of potatoes by irradiation combined with natural low temperature, the dose range and irradiation time after harvesting of two varieties were investigated. Although optimum dose of potatoes and was different according to the variety 12.5krad seemed optimum untill 15-30 day after harvesting and 15krad was for later than 45 day after harvesting. The sooner the irradiation was efficient after harvesting. Optimum dose irradiated group were better in change of sprouting, rotting, weightloss and shrivelling and was extended the storage period more than four months compared with control at natural low temperature storage room.

  • PDF

Development of Escape and Rescue Path-taking Method for Plant Accident Response Training (플랜트 사고 대응 훈련을 위한 탈출 및 조치 경로 설계 기법 개발)

  • Kim, Hyoung Jean;Park, Chan-Cook;Lee, Jae Yong;Lee, Chun Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.61-69
    • /
    • 2017
  • In case of plant accident, the most important measures that field operators, control-room operators and fire fighters must take are the escape from and going into the accident sites. These two different actions are reverse directional moving actions. By training operators and fire fighters with counter-accident path taking measurements, we can prevent the small accidents from becoming large-scale accidents, and can take efficient measurements in case of actual plant accidents. Out of necessities of path-taking training, in this research, we developed the escape and rescue path-taking method for plant accident response training. We can calculate the escape and rescue routes from a operator or fire fighter's current location as of accident happening and provide route data which in turn can be used as the safety training scenario. We expect this path-taking method can enhance the effectiveness and reality of escape and rescue training scenarios.

Electrodeposition of Antimony Telluride Thin Films and Composition-Dependent Thermoelectric Characterization

  • Kim, Jiwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2020
  • Antimony telluride (SbxTey) thin films were synthesized by an electrodeposition method with a control of applied potential at room temperature. Characterization of electrical and thermoelectric properties such as conductivity, Seebeck coefficient, and power factor (P.F.) were conducted as a function of the chemical composition of the electrodeposited films. Morphology of thin films were dense and uniform and the composition was tailored from 25 to 60 at.% of the Sb content by altering the applied potential from -0.13 to -0.27 V (vs. SCE). The conductivity of the films were ranged from 2 × 10-4 ~ 5 × 10-1 S/cm indicating their amorphous behavior. The meaured Seebeck coefficient of films were relatively high compared to that of bulk single cyrstal SbxTey due to their low carrier concentration. The variation of the Seebeck coefficient of the films was also related to the change of chemical composition, showing the power factor of ~10 ㎼/mK2.

Development of an Anti-Freezing Heating Cable Temperature Controller and Its Power Saving Effects Analysis (동파방지 발열선용 온도제어기 개발 및 전기에너지 절감 효과 분석)

  • Lee, Kihong;Lee, Jaejin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.101-106
    • /
    • 2014
  • Although anti-freezing heating cable has been widely installed in most residential boiler pipe, there were excessive energy consumption and fire risk due to inadequate temperature control. In this paper, a new energy saving fire risk-free controller was developed by using microprocessing operation which include detection of not only boiler room temperature but also pipe surface one. Its actual effect has been verified to save more than a half of the energy consumption comparing to conventional controller through temperature and humidity chamber experiment.