• 제목/요약/키워드: adsorptive

검색결과 240건 처리시간 0.026초

석탄회부착활성탄의 제조 및 중금속 제거에 관한 연구 (A Study on the Preparation of the Fly ash Adhesion-Activated Carbon and on the Removal of Heavy Metals)

  • 문옥란;신대윤;고춘남
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.1-8
    • /
    • 1999
  • This study was aimed ultimately to develop an adsorption process treating heavy metal wastewater by utilizing activated carbon using flyash. The affecting factors in adsorption process on heavy metal by flyash adhesion-activated carbon are s follows. Factors such as pH, and quality of activated carbon, and reaction time made batch adsorption isotherm described adsorption capacity was made use of the investigation to evaluate adsorptive possibility of heavy metal.As the results of this study, H ion has influence on adsorption of heavy metal if pH is low. As reaction time is transformed, factors such as optimum reaction time is taken into consideration an adsorptive process of heavy metal because an adsorption and a reduction process occur. Adsorption isotherm of adhesion-activated carbon was generally obeyed to Freundlich formular than Langmuir formular and Freundlich constant, l/n were obtained in the range of 0.1~0.5.

  • PDF

In Vitro Cellular Uptake and Cytotoxicity of Paclitaxel-Loaded Glycol Chitosan Self-Assembled Nanoparticles

  • Park, Ji-Sun;Cho, Yong-Woo
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.513-519
    • /
    • 2007
  • Self-assembled nanoparticles have great potential to act as vehicles for hydrophobic drug delivery. Understanding nanoparticle cellular internalization is essential for designing drugs intended for intracellular delivery. Here, the endocytosis and exocytosis of fluorescein isothiocyanate (FITC)-conjugated glycol chitosan (FGC) self-assembled nanoparticles were investigated by flow cytometry and confocal microscopy. The cellular internalization of FGC nanoparticles was initiated by nonspecific interactions between nanoparticles and cell membranes. Although adsorptive endocytosis of the nanoparticles occurred quickly, significant amounts of FGC nanoparticles were exocytosed, particularly in the early stage of endocytosis. The amount of exocytosed nanoparticles was dependent on the pre-incubation time with nanoparticles, suggesting that exocytosis is dependent on the progress of endocytosis. FGC nanoparticles internalized by adsorptive endocytosis were distributed in the cytoplasm, but not in the nucleus. In vitro cell cycle analysis demonstrated that FGC nanoparticles delivered paclitaxel into the cytoplasm and were effective in arresting cancer cell growth.

Adsorption of Specific Organics in Water on GAC and Regeneration of GAC by Countercurrent Oxidative Reaction

  • Ryoo, Keon-Sang;Kim, Tae-Dong;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.817-824
    • /
    • 2002
  • Granular activated carbon(GAC) is highly effective in removing organic compounds which are resistant to biological disintegration in wastewater treatment. However, GAC has reached its full adsorptive capacity, GAC needs to be regenerated before it can be used for a further adsorption cycle. Countercurrent oxidative reaction (COR) technique has been developed and evaluated for the regeneration of spent GAC. Various parameters such as flame temperature, the loss of carbon, destruction and removal efficiency (DRE) of organic compounds, surface area, surface structure, adsorptive capacity, etc. were examined to determine the performance of COR. The results of these tests showed that adosorptive capacity of regenerated GAC was completely recovered, the loss of carbon was controllable, flame temperature was high enough to insure complete destruction and removal $(\geq99.9999%)$ of specific organics of interest, polychlorinated biphenyls (PCBs), that are thermally stable, and on formation of toxic byproducts such as polychlorinated dibenzo-p-dioxins (PCDDs) or polychlorinated dibenzofurans (PCDFs) were detected during the regeneration process. The COR technique is environmentally benign, easy to use and less copital intensive than other available regeneration technologies.

국산카올린의 흡착성에 관한 연구(III) 고체-액체 계면 흡착 (Studies on the Adsorptive Properties of Korean Kaolin(III) Adsorption at Solid-Liquid Interface)

  • 이계주
    • 약학회지
    • /
    • 제29권6호
    • /
    • pp.380-386
    • /
    • 1985
  • The adsorption of quinine, atropine and methylrozaniline chloride from aqueous phase by different kaolins was studied to innovated utilization of Korean kaolins as pharmaceutical agents. The adsorption isotherms were determined at $27{\pm}1^{\circ}C$ and the results were plotted according to the Langmuir equation. The Langmuir constants were calculated from adsorption isotherms of quinine and methylrozaniline chloride; a=1.46, 1.34 b=5.7, 9.3 and slope=0.175, 0.108, respectively. The kaolins gave the same type of curves with the two alkaloids and methylrozaniline chloride. The white colored premium grade kaolins were better adsorbent for the alkaloids and methylrozaniline chloride than the lower grade ones. The results indicate that the premium grade kaolins could be utilized as an ingredients in intestinal preparations. The condition of activation for the better adsorption was under the cases with the higher temperature and the lower pressure. The smaller particle size, the greater was adsorption power and the activated kaolins had superior adsorptive properties at higher pH value than at higher hydrogen-concentrations.

  • PDF

연속식 고정층 탑내에서의 휘발성 유기 화합물[VOCs]의 흡착 특성에 관한 연구

  • 최인호;최호석;이현재;구본탁;김인호
    • KSBB Journal
    • /
    • 제15권6호
    • /
    • pp.578-583
    • /
    • 2000
  • Biofiltration has been identified as a promising method of odor, VOCs and air toxic removal from waste gas streams because of low capital and operating cost, low energy requirements and an absence of residual products requiring further treatment of disposal. Because biofiltration units are microbial systems in-corporationg microorganisms grown on a porous solid media like compost, peat, soil and mixtures of these materials, there is a need to study of the adsorptive behavior of these supports. The purpose of this study was to investigate the major parameters of adsorptive process. We adsorbed VOCs onto peats and bark, and examined the correlations between the interphase mass transfer coefficients and transfer units, at different stream flow rates, VOCs inlet concentrations and bed lengths.

  • PDF

펄스차이 흡착법김전압전류법에 의한 갈륨 정량 (Determination of Gallium by differential Pulse Adsorptive Stripping Voltammetry)

  • 손세철;엄태윤
    • 대한화학회지
    • /
    • 제36권6호
    • /
    • pp.889-893
    • /
    • 1992
  • Ga-Morin 착물에 대한 흡착벗김전압전류법적 연구를 HMDE를 사용하여 0.1M 아세테이트 완충용액에서 연구하였다. HMDE의 수은 표면에 흡착된 착물의 환원피크 전류에 미치는 여러 분석조건들의 영향을 논의하였으며, 여러 양이온 및 계면활성제의 방해효과에 대하여 검토하였다. 본 연구에서의 검출한계는 흡착시간이 60초일 때 1.7nM 이었으며, 4 ${\mu}$g/l의 Ga를 7회 분석하였을 때 상대표준편차 2.8% 이었다.

  • PDF

Research Progress of Antibiotic Pollution and Adsorption Materials in Aquatic environment

  • Zheng, Kun;Deng, ChengXun;Deng, Xu;Yu, ZhiMin
    • 도시과학
    • /
    • 제8권2호
    • /
    • pp.1-5
    • /
    • 2019
  • China is the great powers of use and production of antibiotics.The current process of sewage treatment plants can not effectively remove antibiotics in water. Chinese scholars have detected different kinds of antibiotics in major waters of the country, which have potential harm to human body. Among all kinds of antibiotic treatment technologies, adsorption removal technology has the advantages of simple operation, low cost and high removal efficiency. It is a widely concerned antibiotic removal technology. However, at present, few materials have been put into practical application, and more materials with low cost and high efficiency need to be found. Different adsorptive materials have different adsorptivity to different antibiotics. For different antibiotics, different adsorptive materials can be integrated in the future, and the theory can be extended to application.

태양광발전시설 무인 유지보수 로봇 개발 (Development of Unmanned Cleaning Robot for Photovoltaic Panels)

  • 이현규;이상순
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.144-149
    • /
    • 2019
  • This paper describes the results of a study on the unmanned maintenance robot that simultaneously performs the cleaning and inspection of the photovoltaic panels. The robot has a special adsorptive device, an infrared sensor, a vacuum level sensor and a camera. The robot uses two SSC (Sliding Suction Cup) adsorptive devices to move up and down the slope. First, the forces generated when the robot moves up the slope are mechanically analyzed, and the required design and control of the adsorption system are suggested. The robot was designed and manufactured to operate stably by using the presented results. Next, the normal force between the panel and the wheel was measured to confirm that the robot was manufactured and operated as intended, and the robot motion was tested on the inclined panel. It has been proven that robots are well designed and built to clean and inspect sloped panels.