• Title/Summary/Keyword: adsorption inhibition

Search Result 140, Processing Time 0.022 seconds

Inhibition Effects of Some Amino Acids on the Corrosion of Cobalt in Hydrochloric Acid and Sulfuric Acid (염산과 황산 용액에서 코발트의 부식에 미치는 아미노산의 부식억제효과)

  • Park, Hyunsung;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.327-334
    • /
    • 2019
  • Inhibition effects of cysteine(Cys), methionine(Met), and histidine(His) on the corrosion of cobalt were investigated in deaerated 0.5 M HCl and 0.5 M $H_2SO_4$ solution. All the inhibition efficiency (IE) in the amino acids for the cobalt corrosion depended on the mixed inhibition. However, IE in the solution of $H_2SO_4$ depended more on the anodic and in the solution of HCl on the cathodic inhibition. Amino acid adsorption process on cobalt surface in the solution can be explained by modified Langmuir isotherm. The molecules of histidine dissolved in both of the solution were physically adsorbed due to the electrostatic interaction between the surface of {$Co-Cl^{-{\delta}}$} and the {$-NH_3{^+}$} or {$-NH^+=$} of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Co and the lone pair of electron in S-atom in Cys and Met.

Comparative Study of Corrosion Inhibition in Acidic and Neutral Chloride Media by Some Amino Acids (염산과 NaCl 수용액에서 알루미늄의 부식에 미치는 아미노산의 부식억제효과)

  • Yoon, Jonghwa;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.364-371
    • /
    • 2018
  • Inhibition effects of alanine (Ala), histidine (His), methionine (Met) on the corrosion of aluminum were investigated in deaerated 0.5 M HCl and NaCl solution. In HCl solution the inhibition efficiency for the aluminum corrosion depended on the cathodic inhibition, and the inhibition efficiency was increased in the order of Met$10^{-4\;}M$ the adsorption process can be explained by Langmuir isotherm, however, in the case of higher concentration by Temkin logarithmic isotherm due to the interaction between the adsorbed molecules.

Inhibition Effect of Amino Acids on the Corrosion of Aluminum in Artificial Sea Water (인공해수에서 알루미늄의 부식에 미치는 아미노산의 부식억제효과)

  • Chon, Jung-Kyoo;Kim, Youn-Kyoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2009
  • Inhibition effects of alanine and methionine on the corrosion of aluminum were investigated in artificial sea water. Based on the low coverage of alanine and methionine we suggested that alanine and methionine adsorption process in aluminum surface is Langmuir isotherm and the carboxyl ion of amino acids seems to be adsorbed on Al.

Studies on Methanolic Extract of Lepidagathis keralensis as Green Corrosion Inhibitor for Mild Steel in 1M HCl

  • Leena, Palakkal;Zeinul Hukuman, N.H.;Biju, A.R.;Jisha, Mullapally
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.231-243
    • /
    • 2019
  • The methanolic extracts of the leaves and stem of the plant Lepidagathis keralensis were evaluated for anticorrosion behavior against mild steel in 1M HCl. Corrosion inhibition studies were done by gravimetric method, electrochemical impedance spectroscopy and potentiodynamic polarization methods. Surface morphology of mild steel in the presence and absence of inhibitors were studied using SEM analysis. UV-Vis studies were also done to evaluate the mechanism of inhibition. Both the extracts showed good inhibition efficiency which increased with increase in concentration of the inhibitor and decreased with increase in temperature. The mechanism of inhibition was explained by adsorption which obeyed Langmuir adsorption isotherm. Thermodynamic calculations revealed a combination of both physisorption and chemisorption of the inhibitor on the surface of mild steel. The extracts behaved as mixed type inhibitors as determined by polarization studies. Quantum chemical studies on Phenoxyethene, one of the major components in the leaf extract of the plant was also carried out to support the experimental results.

Inhibition Effects of Some Amino Acids on the Corrosion of Nickel in Hydrochloric Acid and Sulfuric Acid (염산과 황산 용액에서 니켈의 부식에 미치는 아미노산의 부식억제효과)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.125-131
    • /
    • 2015
  • Inhibition effects of histidine (His), methionine (Met) on the corrosion of nickel were investigated in deaerated 0.5 M HCl and 0.5 M $H_2SO_4$ solution. All the inhibition efficiency for the nickel corrosion depended on the anodic inhibition. Amino acid adsorption process on nickel surface in the solution of HCl can be explained by modified Langmuir isotherm, however, in the solution of $H_2SO_4$ by Temkin logarithmic isotherm due to the interaction between the adsorbed molecules. The molecule of histidine dissolved in HCl-solution were physically adsorbed due to the electrostatic interaction between the surface of {$Ni-Cl^-$} and the {$-NH{_3}^+$} and {$-NH^+=$} of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Ni and the lone pair of electron in His and Met.

Corrosion Inhibition Screening of 2-((6-aminopyridin-2-yl)imino)indolin-3-one: Weight Loss, Morphology, and DFT Investigations

  • Nadia Betti;Ahmed A. Al-Amiery
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.10-20
    • /
    • 2023
  • Because of its inexpensive cost, mild steel is frequently employed as a construction material in different industries. Unfortunately, because of its limited resistance to corrosion, a protective layer must be applied to keep it from decaying in acidic or basic environments. The presence of heteroatoms, such as nitrogen, oxygen, and pi-electrons in the Schiff base could cause effective adsorption on the mild steel surface, preventing corrosion. The weight loss method and scanning electron microscopy (SEM) were used to investigate the inhibitory effects of APIDO on mild steel in a 1 M hydrochloric acid environment. The efficiency of inhibition increased as the inhibitor concentration increased and decreased as the temperature increased. The SEM analysis confirmed that the corrosion inhibition of APIDO proceeded by the formation of an organic protective layer over the mild steel surface by the adsorption process. Simulations based on the density functional theory are used to associate inhibitory efficacy with basic molecular characteristics. The findings acquired were compatible with the experimental information provided in the research.

The Effect of Temperature on the Corrosion of Mild Steel in H3PO4 Containing Halides and Sulfate Ions

  • Chandrasekaran, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • The corrosion behaviour of mild steel in phosphoric acid solution in the presence and absence of pollutants viz. Chloride, Fluoride and Sulfate ions at 302K-333K was studied using mass loss and potentiostatic polarization methods. The addition of chloride and sulfate ions inhibits the mild steel corrosion in phosphoric acid while fluoride ions stimulate it. The effect of temperature on the corrosion behaviour of mild steel indicated that inhibition of chloride and sulfate ions decreased with increasing temperature. The adsorption of these ions (Chloride and sulfate) on the mild steel surface in acid has been found to obey Langmuir adsorption isotherm. The values of activation energy (Ea) and free energy of adsorption ($\Delta$) indicated physical adsorption of these ions (chloride and sulfate) on the mild steel surface. The plot of $logW_{f}$ against time (days) at 302K gives a straight line, which suggested that it obeys first order kinetics and also calculate the rate constant k and half-life time $t_{1/2}$.

Exploiting the Anticorrosion Effects of Vernonia Amygdalina Extract for Protection of Mild Steel in Acidic Environments

  • Adindu, Blessing;Ogukwe, Cynthia;Eze, Francis;Oguzie, Emeka
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.251-262
    • /
    • 2016
  • The corrosion protection of mild steel in 1M HCl and 0.5M $H_2SO_4$ solutions by ethanol extract of Vernonia amygdalina (VA) was studied using a combination of experimental and computational methods. The obtained results revealed that VA reduced the corrosion of mild steel in both environments and inhibition efficiency increased with VA concentration but decreased with prolonged exposure. Electrochemical results showed that the extract functioned via mixed corrosion inhibiting mechanism by adsorption of some organic constituents of the extract on the metal/acid interface. Findings from infrared spectroscopy and electron microscopy all confirmed that VA retarded mild steel corrosion in both 1M HCl and 0.5M $H_2SO_4$ through an adsorption process. The adsorption behavior of selected constituents of the extract was modeled using density functional theory computations.

Corrosion Inhibitors For Zinc in 2 M HCI Solution

  • A. S. Fouda;L. H. Madkour;A. A. El-Shafel;S. A. Abd ElMaksoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.454-458
    • /
    • 1995
  • Inhibiting action of semicarbazide, thiosemicarbazide, sym. diphenylcarbazide towards corrosion of zinc in hydrochloric acid has been investigated. The rate of corrosion depends on the nature of the inhibitor and its concentration. The values of inhibition efficiency from, weight loss, thermometric measurements are in good agreement with those obtained from polarization studies. From the polarization studies, the inhibitors used act as mixed absorption type inhibitors, increased adsorption resulting from an increase in the electron density at the reactive C=S and C=O groups and N-atoms. The thermodynamic parameters of adsorption obtained using Bockris-Swinkels adsorption isotherm reveal a strong interaction of these carbazides on zinc surface.

The Influence of H+ and Cl- Ions on the Corrosion Inhibitive Effect of Poly(para-aminophenol) for Iron in Hydrochloric acid

  • Manivel, P.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.187-193
    • /
    • 2017
  • Polymer amines are found to show distinct corrosion inhibition effects in acidic media. The functional groups of organic compounds have a wide role in the physical and chemical properties, for the inhibition efficiency with respect to steric factors, aromaticity, and electron density. The influence of $H^+$ ions and $Cl^-$ ions on the corrosion inhibitive effect of poly(p-aminophenol) for iron in hydrochloric acid was studied using electrochemical methods such as impedance, linear polarization, and Tafel polarization techniques. The experiments were conducted with and without the inhibitor, poly(p-aminophenol). The concentration range of $H^+$ ions and $Cl^-$ ions are from 1 M to 0.05 M and 1 M to 0.1 M, respectively. With the inhibitor poly(p-aminophenol), this study shows that inhibition efficiency decreases with the reduction of $H^+$ ion and $Cl^-$ ion concentrations in aqueous solution. Further, it reveals that the adsorption of an inhibitor on the surface of iron is dependent on the concentrations of $H^+$ and $Cl^-$ ions in the solution and the adsorption of inhibitor on the iron surface through the cationic form of amine.